KASAHCKUN OEOEPANIbHBIN YHWBEPCWUTET

Kadenpa aHrnuMmnckoro sisbika
ANA eCTeCTBEHHOHaY4HbIX cneynanbHOCTEN

ENGLISH for MASTERS of COMPUTING

Yyeb6HOe nocobue Ans CTyAeHTOB-MarucTpos
MBMuUT- BMK

U3p-Bo KOY, 2013

lleuamaemcs no pewenuio YuebHo-memoouyeckot KoMuccuu u Yuenoeo
coeema Uncmumyma Azvika @PI'AOYBIIO
«Kaszancxuii (Ilpusonocckuii) peoepanvrwiii yHugepcumem»

Kageopa anenutickozo szvika 01 ecmecmeeHHOHAYUHbIX CHeYUATbHOCHEL
Hnemumyma asvika KOV
Ilpomokonr Ne __ om __ 2013 ..

Yuenwiii coeem Uncmumyma sazvika KOY
IIpomoxon Ne __ om 2013 2.

CocraBurenu:
K.(UIO0J.H., JOLEeHT Kad. aHriI. s3bika it ect.crell. J.d. Xakum3sHoBa
K. puinoi.H., cT.open. kadeapsl aHri. s3bika 1 ect.cren. ®.b.Curnukona
npern. kadeapsl aHri. s3bika A ect.cuer. P.H.Cabupoa

Hayunslii penaxkrop:
3aB.Kadenpoil aHrJI. si3bIKa JJIsl €CTECTBEHHOHAYYHBIX CIEIIUATBHOCTEH,
KaHAUAAT NeAarorn4yecKuX HayK, JTIOLUEHT
N.I".KonapaTbeBa

PernieH3eHTHI:
K. TIeJ1. H., J011., 3aB.Kadeapoit aari.sa3eika KHUTY-KAU
H.A .KoucrantnHoBa
K.(uiou. H., 7011 Kadgeaps! anrauiickoro s3pika O.X. Mcmaena

KA3AHCKHWUU @®EJIEPAJIBHBIN VHUBEPCHUTET, 2013

2

Ot cocraBurejiei

JlanHoe ywyeOHOe moOcCOOME TMpelHa3HAauYeHO Uil CTYJEHTOB-MarucTpoB
WMHCTUTYTa BBIYMCIUTEIIEHON MaTEeMaTHKH W HWHQPOPMAIIMOHHBIX TEXHOJOTHI
(BMuliT-BMK), umeromux ypoBeHb A2/Bl, m mpeacrtaBiser coboli cCOOPHUK
ayTEeHTUYHBIX TEKCTOB C pa3pa00TaHHBIMU K HUM YIIPOKHCHHUSIMHU.

[Tocobue coctoutr 3 17 ypokoB (FOHHTOB) M HECKOJBKUX MPHIOKCHUM:
MpaBUJ YTCHHUS MaTeMaTHYECKUX CHUMBOJIOB U (Gopmyn (C TpaHCKpUIIUEH U
IpUMepaMH), BBIPAKCHHUU JIJII aHHOTHPOBAHMS CTAaTel, TEKCTOB JUISI YTCHUS U
aHHOTUPOBaHUA W OuOIMOTpaduu.

TexkcThl, HA KOTOPHIX OCHOBAaHO MOCOOME, 3aMMCTBOBAHBI M3 OPUTHHAIBHBIX
HMCTOYHUKOB u OXBAaThIBAIOT pasIuYHbIC obnactu PUKJIaTHON
MaTteMaTuku. K HUM OTHOCATCS OTPBIBKH M3 HIUPOKO M3BECTHBIX KHUT "Operating
systems" A.C.Tanenbayma u A.C.Byaxamia, "Introduction to Computing"
J.9OBanca, “Prime numbers” P.Kpsunamia u C.ITomepania, “Introduction to grid
computing”, a Takke TEKCTBI W3 COBPEMEHHBIX MHTEpHET-HCTOYHUKOB. ITO
MO3BOJIUT MarucTpaM paclIupUTh CJIOBapHBIM 3amac u HaOpaTh HEOOXOIUMYIO
poeCCHOHANIBHYIO JICKCHKY, a TaKXe OyJeT CIoCOOCTBOBATH MOJJICPKAHUIO HX
WHTEpeca K W3YYCHHIO aHIIHMCKoro s3bika. [locobme paccumTaHo Kak is

ayJIMTOPHOM, TaK U IS CAMOCTOSITEIbHOM PaOOTHI.

CONTENTS

1. Programming languages and problems with natural languages................. 5
2. Programming languages requirements.............cooevveiiiieniineeiienneeninnns. 11
3. Programming languages classification........................ococii 16
4, Russell’s ParadoX.........oooiiiiiiiiiii i 21
5. Coin-THP ProtoCol. ... 26
6. Random-number generation...............cooeiiiiiiii i 29
7 NUMDBIS. . 32
8. Quasi-Monte Carlo (MC) methods............cccoiiiiiiiiiii 35
9. Operating systems. Introduction.................ooiiiiiiiiii i, 38
10.The Operating System FUNCLIONS.coiiiiiiiii e, 44
11.Cloud COMPULING. ...ttt e e e e, 52
12.Grid COMPULING. ...c.ue e e e e e e e, 58
13.0pen Source VS CloSed SOUICE.oueieitiee e, 64
14.Future human computer interaction..............ccovevriiiiiiiiiiiieieeeeenn, 70
15, RODOLS. ... 76
16.Artificial intelligence and robotS. ..o 82
17.Computational lINQUISTICS.oeiii i, 87
Appendix 1. How to read special terms and formulas...........................o.ees. 93
Appendix 2. Phrases for rendering...........ccoooeiiiiiiiiiiiiii e 102
Appendix 3. Texts for rendering.........c.cooeiiiiiiiiii e 105
Appendix 4. Bibliography.........coovuiiiiiiii i 125

Unit 1

Programming and problems with natural languages

I. Before you read answer the following questions:

What do you think is the main difference of the computer from other machines?
What qualities should an ideal programmer have?

Why do you think we cannot use natural languages for writing computer

programs?

I1. Read the text and compare your answers with the information in the text.

What distinguishes a computer from other machines is its programmability.
Without a program, a computer is an overpriced door stopper. With the right
program, though, a computer can be a tool for communicating across the continent,
discovering a new molecule that can cure cancer, composing a symphony, or
managing the logistics of a retail empire.

Programming is the act of writing instructions that make the computer do
something useful. It is an intensely creative activity, involving aspects of art,
engineering and science. Good programs are written to be executed efficiently by
computers, but also to be read and understood by humans. The best programs are
delightful in ways similar to the best architecture, elegant in both form and
function.

The ideal programmer would have the vision of Isaac Newton, the intellect
of Albert Einstein, the creativity of Miles Davis, the aesthetic sense of Maya Lin,
the wisdom of Benjamin Franklin, the literary talent of William Shakespeare, the
oratorical skills of Martin Luther King, the audacity of John Roebling, and the self-
confidence of Grace Hopper.

Fortunately, it is not necessary to possess all of those rare qualities to be a
good programmer! Indeed, anyone who is able to master the intellectual challenge

of learning a language <...> can become a good programmer. <...>

Natural languages <...> are not well suited for human-computer or
computer-computer communication. Why can’t we use natural languages to
program computers? We survey several of the reasons for this. We use specifics
from English, although all natural languages suffer from these problems to varying
degrees.

Complexity. Although English may seem simple to you now, it took many
years of intense effort (most of it subconscious) for you to learn it. Despite using it
for most of their waking hours for many years, native English speakers know a
small fraction of the entire language. The Oxford English Dictionary contains
615,000 words, of which a typical native English speaker knows about 40,000.

Ambiguity. Not only do natural languages have huge number of words,
most words have many different meanings. Understanding the intended meaning of
an utterance requires knowing the context, and sometimes pure guesswork.

For example, what does it mean to be paid biweekly? According to the
American Heritage Dictionary, biweekly has two definitions:

1. Happening every two weeks.
2. Happening twice a week, semi-weekly.

<...> So, depending on which definition is intended, someone who is paid
biweekly, could either be paid once or four times every two weeks! The behavior
of a pay-roll management program better not depend on how biweekly is
interpreted.

Even if we can agree on the definition of every word, the meaning of a
sentence is often ambiguous. This particularly difficult example is taken from the
instructions with a shipment of ballistic missiles from the British Admiralty:

It is necessary for technical reasons that these warheads be stored upside
down, that is, with the top at the bottom and the bottom at the top. In order that
there be no doubt as to which is the bottom and which is the top, for storage
purposes, it will be seen that the bottom of each warhead has been labeled
“TOP”.

Irregularity. Because natural languages evolve over time as different

cultures interact and speakers misspeak and listeners mishear, natural languages

6

end up a morass of irregularity. Nearly all grammar rules have exceptions. For
example, English has a rule that we can make a word plural by appending an s.
<...> This rule works for most words. <...> It does not work for all words,
however. The plural of goose is geese, the plural of deer is deer, and the plural of
beer is controversial <...>. These irregularities can be charming for a natural
language, but they are a constant source of problems for non-native speakers,
attempting to learn a language. <...>

Uneconomic. It requires a lot of space to express a complex idea in a natural
language. Many superfluous words are needed for grammatical correctness, even
though they do not contribute to the desired meaning. Since natural languages
evolved for everyday communication, they are not well-suited to describe
the precise steps and decisions needed in a computer program. As an example,
consider a procedure for finding the maximum of two numbers. In English, we
could describe it like this:

To find the maximum of two numbers, compare them. If the first number
Is greater than the second number, the maximum is the first number.
Otherwise, the maximum is the second number.

Perhaps shorter descriptions are possible, but any much shorter
description probably assumes the reader already knows a lot. By contrast, we
can express the same steps in the Scheme programming language in very concise
way (don’t worry if this doesn’t make sense yet — it should by the end of this
chapter):

(define (bigger a b)(if (> ab) ab))

Limited means of abstraction. Natural languages provide small, fixed
sets of pronouns to use as means of abstraction, and the rules for binding
pronouns to meanings are often unclear. Since programming often involves
using simple names to refer to complex things, we need more powerful means
of abstraction than natural languages provide.

(http://computingbook.org/Programming.pdf)

I11. Close the text and tell whether the following sentences are true or false,
correct the false statements:

1. The best use of the computer is being a door stopper.

2. Programming is an extremely creative activity, demanding a lot of qualities from
a person.

3. According to the text, no person in the world can become an ideal programmer
because the requirements are too high.

4. Anyone who has learnt at least one language can become a good programmer.

5. Natural languages can successfully be used for communicating with the
computer.

6. A typical native English speaker knows about one fourth of the whole language
stock which is contained in the Oxford English Dictionary.

7. According to the text, a programming language must not be ambiguous.

8. lrregularities are really charming for both natural and programming languages.
9. Natural languages can be well suited to describe the precise steps and decisions
needed in a computer program.

10. Programming languages need more powerful means of abstraction than

natural languages provide.

IV. Match the words in two columns so that they should form word-

combinations from the text.

1. to cure a. communication
2. well b. an utterance

3. human-computer C. sense

4. self- d. suited

5. meaning of e. cancer

6. In concise f. confidence

7. to make g. way

V. Find derivatives in the text for the following words. Explain their meaning or

translate into Russian:

1. to program adjective 2 nouns
2. to describe noun
3. regular adjective noun
4. to create adjective noun
5. to suite adjective

6. audacious noun
7. to utter noun

V1. Match the first half of each sentence with the most appropriate second half

1. What distinguishes a computer from
other machines

a.. Itis not necessary to possess all of
those rare qualities.

2. Programming is the act of writing
instructions

b. for human-computer or computer-
computer communication.

3. To be a good programmer

c. it took many years of intense effort
for you to learn it.

4. Natural languages are not well suited

d. requires knowing the context

5. Although English may seem very
simple,

e. is its programmability.

6. Understanding the intended meaning
of an utterance

f. to describe the precise steps and
decisions needed in a computer
program.

7. Natural
suited

languages are not well-

g. that make the computer do
something useful.

VII. Answer the following questions:

1. What can computer do with the right program?

2. Can you explain what programmability is?

3. What is programming and why good programs can be compared with

masterpieces of arts?

4. What kind of person can become a good programmer?

5. What percent of the English word stock does an average Englishman know?

6. Can you give your own examples of natural languages ambiguity?

7. What does the irregularity of natural languages mean? Try to explain on
yourself.

8. Why are natural languages not able to describe precise steps and decisions
needed in a computer program?

9. Can you summarize all reasons why natural languages are not well suited for

programming?

VI1II. Translate sentences from Russian into English:

1. KommbloTepHOE MPOTpaMMHUPOBAHUE — ITO JIE€ATEIBHOCTh, PE3yJbTaTOM
KOTOPOH SIBIISIETCA MOCJIEI0BATEILHOCTh HHCTPYKIIMM JIJIs1 KOMIIBIOTEPA.

2. K cuactpio, 9TOOBI OBITH XOPOIIUM POTPAMMHUCTOM, HE 00s3aTeNFHO 00JIaIaTh
TUMU PEJIKUMHU KauyeCTBAMHU.

3. CyiecTByeT HECKOJbKO MPUYUH, MO KOTOPHIM E€CTECTBEHHBIE SI3BIKM HE
MOAXOJAT JJIsl OOIIEHUS] MEXKIY YETOBEKOM M KOMITBIOTEPOM.

4. VI3yueHue eCTeCTBEHHOTO SI3bIKa MOXET OTHSITh HECKOJIBKO JIET MHTEHCUBHBIX
YCUJIU .

5. HeolHO3HAYHOCTH €CTECTBEHHBIX SI3BIKOB TaK)KE€ HE MO3BOJIAET HCIOJIB30BAThH
UX JIJISl IPOTPAMMHUPOBAHMS.

6. K coxanenuio, BO BCEX €CTECTBCHHBIX SI3bIKaxX IMpaBHUJia TPAMMATHKH WMEIOT
UCKITFOUEHUS, KOTOPhIE HY>KHO 3ay4YHBaTh.

7. EcrecTBeHHBIE S3BIKM O00JIQAAIOT TEHACHIMEH K HM30BITOYHOCTH, YTO HE
MO3BOJISIET HA3BATh MX YKOHOMHUYHBIM CPEICTBOM BBIPQKCHHS MBICIICH.

8. DddexTuBHBIN S3BIK TPOrPAMMHUPOBAHUS HY>KJAETCS B CPEJICTBAX a0CTPAKIIUH,
C MOMOIIBIO KOTOPBIX CIOKHBIE OOBEKTHI MOXKHO Ha3bIBATh U 00paIiaThCs C HUMHU
KaK C €ITUHBIM LIEJIBIM.

9. XapakTepuCcTHKa, KOTOpas OTIWYAeT KOMIBIOTEP OT JIPYTUX YCTPOUCTB — 3TO

POrpaMMHUPYEMOCTb.

10

IX. Make up a plan to the text and try to write a short summary of the text, using

one sentence for each item of the plan.

Unit 2

Programming Languages Requirements

I. Before you read answer the following questions:

Can you give the definition of a programming language?

What requirements should a well-suited programming language meet?

Are you able to explain the difference between a compiler and an interpreter?

Who is known to develop the first compilers?

I1. Read the text and compare your answers with the information in the text.

For programming computers, we want simple, unambiguous, regular, and
economical languages with powerful means of abstraction. A programming
language is a language that is designed to be read and written by humans to create
programs that can be executed by computers. Programming languages come in
many flavors. It is difficult to simultaneously satisfy all desired properties since
simplicity is often at odds with economy. Every feature that is added to a
language to increase its expressiveness incurs a cost in reducing simplicity
and regularity. For the first two parts of this book, we use the Scheme
programming language which was designed primarily for simplicity. For the later
parts of the book, we use the Python programming language, which provides more
expressiveness but at the cost of some added complexity.

Another reason there are many different programming languages is that they
are at different levels of abstraction. Some languages provide programmers with
detailed control over machine resources, such as selecting a particular location in
memory where a value is stored. Other languages hide most of the details of the
machine operation from the programmer, allowing them to focus on higher-level

actions.

11

Ultimately, we want a program the computer can execute. This means at the
lowest level we need languages the computer can understand directly. At this level,
the program is just a sequence of bits encoding machine instructions. Code at this
level is not easy for humans to understand or write, but it is easy for a processor to
execute quickly. The machine code encodes instructions that direct the processor to
take simple actions like moving data from one place to another, performing simple
arithmetic, and jJumping around to find the next instruction to execute.

For example, the bit sequence 1110101111111110 encodes an
instruction in the Intel x86 instruction set (used on most PCs) that instructs the
processor to jump Backwards two locations. Since the instruction itself requires
two locations of space, jumping back two locations actually jumps back to the
beginning of this instruction. Hence, the processor gets stuck running forever
without making any progress.

The computer’s processor is designed to execute very simple
instructions like jumping, adding two small numbers, or comparing two values.
This means each instruction can be executed very quickly. A typical modern
processor can execute billions of instructions within a second.* The problem with
instructions at this level is that they are not easy for humans to write and
understand, and you need many simple instructions before you have a useful
program.

A compiler is a computer program that generates other programs. It
translates an input program written in a high-level language that is easier for
humans to create into a program in a machine-level language that can be executed
by the computer. Admiral Grace Hopper developed the first compilers in the
1950s. An alternative to a compiler is an interpreter. An interpreter is a tool that
translates between a higher-level language and a lower-level language, but where

a compiler translates an entire program at once and produces a machine language

154 “2GHz processor” executes 2 billion cycles per second. This does not map directly to the
number of instructions it can execute in a second, though, since some instructions take several
cycles to execute. Until the early 1950s, all programming was done at the level of simple
instructions.

12

program that can be executed directly, an interpreter interprets the program a
small piece at a time while it is running. This has the advantage that we do not
have to run a separate tool to compile a program before running it; we can simply
enter our program into the interpreter and run it right away. This makes it easy to
make small changes to a program and try it again, and to observe the state of our
program as it is running.

One disadvantage of using an interpreter instead of a compiler is that
because the translation is happening while the program is running, the program
executes slower than a compiled program. Another advantage of compilers over
interpreters is that since the compiler translates the entire program it can analyze
the program for consistency and detect certain types of programming mistakes
automatically instead of encountering them when the program is running (or
worse, not detecting them at all and producing unintended results). This is
especially important when writing critical programs such at flight control software
— we want to detect as many problems as problems in the flight control software
before the plane is flying!

Since we are more concerned with interactive exploration than with

performance and detecting errors early, we use an interpreter instead of a compiler.

(http://computingbook.org/Programming.pdf)

IV. Find the synonyms from the text meaning the same as the words or phrases
on the left:

1. having a clear meaning
. to contradict, not to match smth.

. first of all

2

3

4. finally, eventually, in the long run
5. to implement, to carry out
6
7
8
9

. to come to standstill
. to create, to produce

S|~ olalo| o

. to discover, to reveal, to disclose

. consequently, therefore

13

V. Give definitions to the following terms:

1) programming language; 2) program; 3) instruction; 4) compiler; 5) interpreter.

VI. Find derivatives in the text for the following words. Explain their meaning

or translate into Russian:

1. economy 2 adjectives noun
2. code verb —

3. consistent adjective noun
4. tointend 2 adjectives noun
5. to translate 2 nouns —

6. active adjective noun
7. direct adverb noun

VII. Match the first half of each sentence with the most appropriate second half

1. A programming language is

designed to be used by humans

a. just a sequence of bits encoding
machine instructions.

2. Different programming languages | b. into machine-level language

3. At the lowest level a program is c. but it works in a different way from a

compiler.
4. A compiler translatesaninput |d. to create programs that can be
program written in a high-level executed by computers.
language

e. that it can analyze the program for
consistency and detect certain types of
programming mistakes automatically.

5. The first compilers were developed

6. An interpreter translates
between a higher-level language and
a lower-level language,

f. provide different levels of abstraction.

7. An important advantage of

compilers over interpreters is

g. by an American computer scientist
Grace Hopper whose nick was “Amazing
Grace”.

14

VIII. Answer the following questions:

1. What does a program represents at the lowest level?

2. Why do computers use codes consisting of 1s and 0s?

3. What kind of simple actions can the processor perform?

4. How many instructions a second can a typical modern processor execute?
5. What kind of problem do humans have with instructions at the lowest level?
6. Who invented the first compilers?

7. Do you know any other achievements and inventions by Grace Hopper?

8. What is the difference between a compiler and an interpreter?

9. What are advantages and disadvantages of compilers and interpreters?

IX. Translate sentences from Russian into English:

1. SI3pIkM [pPOrpaMMHPOBAHMSI — OTO HCKYCCTBEHHO CO3/IaHHBIE SI3BIKH,
npeIHa3HAYCHHbBIC JIsl HAMMCAHUST KOMIIBIOTEPHBIX MTPOTrpamM.

2. Bce s3pIKM TIPOTpaMMHUPOBaHUsS JACNATCS Ha JBE TPYIIBL: SI3BIKA HHU3KOTO
YPOBHS U SI3bIKU BBICOKOT'O YPOBHSI, OJIM3KUE K YEIOBEUECKOMY SI3BIKY.

3. OmauM w©3 TepBBIX SA3bIKOB mporpammupoBanusi crtan FORTRAN
(or FORmula TRANSslator — nepeBoaumk Gpopmyin), pazpadoTtanHbiid B 1957T.

4. HenoctaToyHO CO37aTh S3bIK MIPOTPAMMUPOBAHUS, JIJISI KAXKIOTO SI3bIKa HY>KEH
CBOW TmepeBOMYMK. TakuMu TporpaMMamMu SIBJISIOTCS KOMOWIATOPHI |
TPAHCIISITOPHI.

5. Komnmiarop — 3T0 mporpamma, MpeaHa3HaueHHas sl IepeBojia MpOrpamMMmBl,
HAIMCAaHHOW Ha KaKOM-JTHOO S3bIKE, B IPOTPaMMy B MAITUHHBIX KOJIaX.

6. MuTepnperaTop — 3TO mporpamma, rnpeaHasHadeHHas i nocrpounoit (line-by-
line) TpaHCSIIMY ¥ BBITIOTHEHUS] KCXOTHON TPOTPAMMBI.

7. VHtepnperaTop cOOOLIAET O HAWIACHHBIX UM OHIMOKAaX IOCJie TPAHCISALUH
KaXXIOW CTPOKH MPOrpaMMbl. DTO 3HAUUTENIBHO OOJEryaeT Mpolecc MOUCKa U
UCTIPaBIICHUS] OIMIMOOK B MPOTpamMme, OJHAKO CYIIECTBEHHO YBEIHMYMBACT BpEeMs

TPpaHCJAIUH.

15

8. Kommnumstop TpaHciupyer nporpaMMy HAMHOTO OBICTpEe, YeM UHTEPIpPETaTop,
HO COOOINAeT O HaWJCHHBIX UM OMIMOKaX IMOCJE 3aBEpIICHHUS KOMIMIALUN BCEH
nporpaMMel. HaliTi 1 ncripaBuTh OIIMOKH B 3TOM CiIy4ae TpyIHeEe.

9. UnaTepnperaTopbl pacCYUTaHbl, B OCHOBHOM, HA SI3bIKM, NPEIHA3HAYCHHBIC IS
o0yueHus IIPOrPAMMUPOBAHMIO, " UCIIOJIB3YIOTCS HAaYMHAIOMU
IIPOrPaAMMHUCTaMHU.

10. BoOJBIIMHCTBO COBPEMEHHBIX SA3BIKOB IPEJHA3HAYEHBl ISl pPa3padOTKU

CJIOHBIX ITAKCTOB IIPOrpaMm U paCCUUTAHbI Ha KOMITUJIAIHIO.

X. Make up a plan to the text and try to write a short summary of the text, using

one sentence for each item of the plan.

Unit 3
Programming languages classification
I. Before you read answer the following questions:
1. Do you know anything about the types or categories of programming languages?

2. How many generations of programming languages are there nowadays?

I1. Read the text and compare your answers with the information in the text.

Programming is a way of sending instructions to the computer. To write
these instructions, programmers use programming languages to create source code,
and the source code is then converted into machine (or object) code, the only
language that a computer understands. People, however, have difficulty
understanding machine code. As a result, first assembly languages and then higher-
level languages were developed. Programming languages require that information
be provided in a certain order and structure, that symbols be used and sometimes
even that punctuation be used. These rules are called the syntax of the

programming language, and they vary a great deal from one language to another.

16

Categories of languages. Based on evolutionary history, programming
languages fall into one of the following three broad categories:

Machine languages. Machine languages consist of the Os and 1s of the
binary number system and are defined by hardware design. A computer
understands only its machine language — the commands in its instruction set that
order the computer to perform elementary operations such as loading, storing,
adding and subtracting.

Assembly languages. These languages were developed by using Englishlike
mnemonics. Programmers worked in text editors to create their source files. To
convert the source file into object code, researchers created translator programs
called assemblers. Assembly languages are still much easier to use than machine
languages.

High-level languages. These languages use syntax that is close to human
language, they use familiar words instead of communicating in digits. To express
computer operations, they use operators, such as the plus or minus sign, that are
the familiar components of mathematics. As a result, reading, writing and
understanding computer programs is easier.

Machine languages are considered first-generation languages, and assembly
languages are considered second-generation languages. The higher-level languages
started with the third generation. Third-generation languages (3GLs) can support
structured programming, use true English-like phrasing, and make it easier for
programmers to share in the development of program. Besides, they are portable,
that is, you can put the source code and a compiler or interpreter on practically
every computer can create working object code. Some of the third-generation
languages include the following: FORTRAN, COBOL, BASIC, Pascal, C, C++,
Java, ActiveX.

Fourth-generation languages (4GLs) use either a text environment, much
like a 3GL, or a visual environment. In the text environment the programmer uses
English-like words when generating source code. In a 4GL visual environment the

programmer uses a toolbar to drag and drop various items like buttons, labels, and

17

text boxes to create a visual definition of an application. Many 4GLs are database-
aware; that is, you can build programs with a 4GL that works as front end (an
interface that hides much of the program from the user) to databases. Programmers
can also use 4GLs to develop prototypes of an application quickly. Some of the
fourth generation languages are Visual Basic and Visual Age.
A 5GL would use artificial intelligence to create software based on your
description of what the software should do.
(http://lingualeo.ru/jungle/21386)

I11. Close the text and tell whether the following sentences are true or false,
correct the false statements:

1. The only language that a computer understands is the source code.

2. The syntax of programming languages varies a great deal from one language to
another.

3. Programming languages are divided into 2 broad categories: low-level and high
level languages.

4. Machine languages consist of the Os and 1s and are defined by hardware design.
5. Assembly languages were developed by using Russian-like mnemonics.

6. Assemblers are translator programs created for converting object code into
source code.

7. A high-level programming language is characterized by strong abstraction from
the details of the computer, making the process of developing a program simpler
compared to a lower-level language.

8. The higher-level languages started with the fourth generation.

9. Some of the fourth generation languages are ALGOL and PL1.

10. A 5GL would use artificial intelligence to create software based on user’s

description of the software tasks.

18

http://en.wikipedia.org/wiki/Abstraction_(computer_science)
http://en.wikipedia.org/wiki/Computer

IV. Match English and Russian equivalents in two columns:

1. portable acCOIIMaTUBHOE 3aIIOMUHAHUE

2. text editor 10JIb30BaTEILCKUI HHTEphEiic

3. text box KOMITOHYIOII[as MporpaMma, mporpamma cOOpKH
4. mnemonics BHU3yallbHAS cpejia

5. assembler TICPEHOCUMBIN C OJIHOM MaIlIMHBI Ha IPYTYIO

6. front end porpamMma peJaKTHPOBAHUS TEKCTOB

7. visual environment TEKCTOBOE OKHO, IOJIE TEKCTa

V. Match the words in two columns so that they should form word-combinations

from the text.

1. source a. end

2. low-level b. operations

3. to convert into c. code

4. translator d. language

5. to perform e. environment
6. front f. machine code
7. visual g. programs

VI. Complete the gaps in the following sentences:
1. The ... code is then converted into machine (or object) code.
2. High level languages were ... because people had difficulties in understanding
... code.
3. The rules about symbols and punctuation to be used are called the ...of the
programming language.
4. All programming languages one of the following three broad categories.
5. Instruction are commands for the computer to ... elementary operations such as
loading, storing, adding and subtracting.
6. Assembly languages are ... second-generation languages.

19

7. Third-generation languages can support ... programming.

8. Third-generation languages are ..., that is, you can put the source code and a
compiler or interpreter on every computer.

9. Fourth-generation languages use either a text ..., or avisual

10. Many 4GLs are database-

VII. Answer the following questions:
. What languages are called first generation languages?
. What for were assembler programs created?

. What generation do assembly languages belong to?

1

2

3

4. Can you name any early high-level languages?

5. What features do third-generation languages (3GLs) have?
6. What is special for fourth-generation languages (4GLs)?
-

What would 5GLs use to create software?

VIII. Translate sentences from Russian into English:

1. B pa3BuUTHHU A3BIKOB NPOrPaMMHPOBAHUS PACCMATPUBAIOT 5 TOKOJICHUN.

2. SI3pIkM TIpOTpaMMHUPOBAHUS TIEPBOTO TTOKOJICHUS MPECTABISIIN co00i HabOp
MaIllMHHBIX KOMaHJ B JBOWYHOM KOJI€, KOTOPBIM OMpPEAENSUICS apXUTEKTypou
KOHKpeTHON DBM.

3. Bropoe noxonenue AIl xapakrepusyeTcsi cO3aHUEM SI3BIKOB acceMOJIEpHOTO
TUIA , TO3BOJIAIONIMX BMECTO KOMAaHJ HCIOJb30BaTh HUX MHEMOHUYECKUE
CUMBOJIbHBIE 0003HAYEHUSI.

4. Tpetbe nokonenne Sl HaumHaercs ¢ mosBieHus B 1956 r. mepBoro s3bika
BBICOKOTO YpoBHs - Fortran, paspaboranHoro nmoa pykooactBoM JIx. bakyca B
dbupme IBM.

5. Bckope mocne s3pika Fortran MOSIBUIMCH TaKue HBIHE IIUPOKO M3BECTHHIE

s3b1ku, Kak Algol, Cobol, Basic, PL/1, Pascal, APL, ADA, C, Forth, Lisp, Modula

v JIp.

20

6. OcHOBHas OTIWYUTENbHAS OCOOCHHOCTh S3bIKA TPETHETO IMOKOJICHHS:
OPUEHTUPOBAHUE HA AJITOPUTM (AJITOPUTMUUYECKHUE SI3BIKH).

7. C nHawana 70-x rofioB MO HACTOSIIEE BPEMs MPOAOHKACTCS MEPUOJ S3BIKOB
YETBEPTOIO MOKOJICHHUS.

8. OTu s3bIKM OOBIYHO OPUEHTHUPOBAHBI HA CHEIUAIM3UPOBAHHBIE OOJIACTH
NPUMEHEHUs, TJIe XOpOIIMX PE3yJbTaTOB MOXKHO JOOUTHCS, HCIOJIb3Yys HE
YHUBEpCAJIbHBIE, a MPOOJIEMHO-OPUECHTUPOBAHHBIE SI3BIKH, OINEPUPYIOLIUE
KOHKPETHBIMU TOHITUSAMU y3KOM MIpeIMETHON 00J1acTH.

9. Poxnenue S3BIKOB MATOTO TOKOJIGHUS MPOM30muIo B cepeande 90-x rogos. K
HUM OTHOCATCS TakK€ CHUCTEMbl AaBTOMATHYECKOTO CO3JaHUSl MPUKIATHBIX
nporpaMM C TIOMOIIBIO BHU3YaJIbHBIX CPEACTB pa3paboTKu, Oe3 3HaHUs

IIPOrPaMMHUPOBAHUSL.

IX. Make up a plan to the text and try to write a short summary of the text, using

one sentence for each item of the plan.

Unit 4
Russell’s Paradox.
I. Before you read the text answer the following question:
What is paradox? Give some examples.
Are they useful anyway?
I1. Read the statements. Do you think they are true or false?
1. Gottlob Frege tried to create an axiomatic system for all of mathematics

built from simple logic.
2. Frege’s system was perfect.
3. There are three sensible answers to the paradoxical question.

4. No one tried to resolve the paradox by constructing a system to make it

possible to define the set R.

21

5. Russell and Whitehead published Principia Mathematica to solve a problem

with Frege’s system.

I11. Read the text to check your answers.

Towards the end of the 19th century, many mathematicians sought to
systematize mathematics by developing a consistent axiomatic system that is
complete for some area of mathematics. One notable attempt was Gottlob Frege’s
Grundgestze der Arithmetik (1893) which attempted to develop an axiomatic
system for all of mathematics built from simple logic.

Bertrand Russell discovered a problem with Frege’s system, which is now
known as Russell’s paradox. Suppose R is defined as the set containing all sets that
do not contain themselves as members. For example, the set of all prime numbers
does not contain itself as a member, so it is a member of R. On the other hand, the
set of all entities that are not prime numbers is a member of R. This set contains all
sets, since a set is not a prime number, so it must contain itself.

The paradoxical question is: is the set R a member of R? There are two
possible answers to consider but neither makes sense:

Yes: R is a member of R

We defined the set R as the set of all sets that do not contain themselves as

member. Hence, R cannot be a member of itself, and the statement that R

Is a member of R must be false.

No: R is not a member of R

If R is not a member of R, then R does not contain itself and, by definition,

must be a member of set R. This is a contradiction, so the statement that R

Is not a member of R must be false.

The question is a perfectly clear and precise binary question, but neither the
“yes” nor the “no” answer makes any sense. Symbolically, we summarize the
paradox: for any set s, s € R if and only if s /2 s. Selecting s = R leads to the
contradiction: R2 R ifand only if R /2 R.

Whitehead and Russell attempted to resolve this paradox by constructing
their system to make it impossible to define the set R. Their solution was to

22

introduce types. Each set has an associated type, and a set cannot contain members
of its own type. The set types are defined recursively:

* A type zero set is a set that contains only non-set objects.

* A type-n set can only contain sets of type n - 1 and below.

This definition avoids the paradox: the definition of R must now define R as
a set of type k set containing all sets of type k - 1 and below that do not contain
themselves as members. Since R is a type k set, it cannot contain itself, since it
cannot contain any type Kk sets.

In 1913, Whitehead and Russell published Principia Mathematica, a bold
attempt to mechanize mathematical reasoning that stretched to over 2000 pages.
Whitehead and Russell attempted to derive all true mathematical statements about
numbers and sets starting from a set of axioms and formal inference rules. They
employed the type restriction to eliminate the particular paradox caused by set
inclusion, but it does not eliminate all self-referential paradoxes.

For example, consider this paradox named for the Cretan philosopher
Epimenides who was purported to have said “All Cretans are liars”. If the
statement is true, then Epimenides, a Cretan, is not a liar and the statement that all
Cretans are liars is false. Another version is the self-referential sentence: this
statement is false. If the statement is true, then it is true that the statement is false
(a contradiction). If the statement is false, then it is a true statement (also a
contradiction). It was not clear until Godel, however, if such statements could be
stated in the Principia Mathematica system.

(Evans D. Introduction to Computing/ Explorations in Language, Logic, and

Machines. 2011//http://computingbook.org)

IV. Fill in the gaps with the words given:
Avoid, contradiction, be defined, follow, hierarchy, members, significance, states,
specify, set theory, variable, ordinals.

1. Cesare Burali-Forti discovered a similar in 1897 when he noticed that

since the setof is well- ordered, it too must have an ordinal.

23

. Russell’s paradox arises within naive by considering the set of all sets

that are not of themselves.

. Before a function can , one must first exactly those objects to

which the function will apply (the function’s domain).

. The Of Russell’s paradox can be seen once it is realized that all

sentences from a contradiction.

. Comprehension (or Abstraction) axiom in effect that any propositional

function, P(x) containing x as a free can be used to determine a set.

. Russell’s basic idea is that we can commitment to R (the set of all sets

that are not members of themselves) by arranging all sentences (all

propositional functions) into

V. Match a word in A with its synonym in B.

A. attempt, contradiction, define, member, set, since, select, inclusion.

B. because, choose, characterize, group of items, incorporation, opposition, part,

try

VI.

Match the words in two columns so that they should form word-

combinations from the text.

1. todevelop a. the set of elements
2. toleadto b. sense

3. to define C. an axiomatic system
4. to make d. the type restriction
5. to eliminate e. the contradiction

6. to employ f. the paradox

24

VII. Match the first half of each sentence with the most appropriate second half

1. Many mathematicians sought to | a. is the set R a member of R?
systematize mathematics
2. Bertrand Russell discovered a|b. but neither the “yes” nor the “no”

problem with Frege’s system, answer makes any sense.
3. The paradoxical question is: c. by developing a consistent axiomatic
system

4. The question is a perfectly clear and | d. who stated: “All Cretans are liars”.
precise binary question,
5. Whitehead and Russell attempted to | e. which is now known as Russell’s

resolve this paradox paradox
6. Consider this paradox named for the | f. by constructing their system to make
Cretan philosopher Epimenides it impossible to define the set R.

VIII. Translate from Russian into Eglish:

1. CampIM 3HaMEHUTHIM M3 OTKPBITBIX B HAIIeM BEKE MapaOKCOB SIBIACTCS
napanokc Paccena, ooHapyxennsiii b. Pacceniom u onucanHbiii uM B ucbme K [
Depre.

2. Ilyctb R — MHOECTBO BCEX MHOXKECTB, KOTOPBIE HE COJIEPKAT ceOsl B KAUECTBE
cBoero snieMeHTa. CoJepKUT JU OHO camo ceOsi B kadecTBe syemeHTa? Eciu
MPEANOJIOKUTh, YTO COAEPKHUT, TO MBI TIOJIy4aeM MPOTUBOPEUUE C "HE colepixar
cebs B kauecTBe cBoero semenTa. Eciu npennonoxkuTe, 9To He COAEPIKUT ceosl,
KaK 2JIEMEHT, TO BHOBb BO3HHMKAET MPOTUBOpPEUHE, BEb — MHOXKECTBO BCEX
MHOKECTB, KOTOpbIE HE COJEpKaT ceOsi B Ka4eCTBE CBOETO DJIEMEHTA, a 3HAYUT,
JOJKHO COJEPKATh BCE BO3MOXKHbBIE AJIEMEHTBI, BKIIFOUAs U CeO04l.

3. CymecTByeT MHOTO TMOMYJSAPHBIX (GOpMYIHpPOBOK Mmapagokca Paccena.
Haubosnee npeBHsis M3 HUX NMPUMKCHIBACTCS KpUTCKOMY (ustocody DnuMEHUIY
U 3BYYHT CJEAYIOmMUM 00pa3om: "KpUTSHUH cKazall, YTO BCE KPUTSHE JIKEIbI'.

Ckazain v oH mipaBay?

IX. Make up a plan to the text and try to write a short summary of the text, using
one sentence for each item of the plan.
X. Use additional resources. Find an example of a paradox, present and consider
it.

25

Unit 5
Coin-flip protocol

I. Look at the title of the text. What are you going to read about?
I1. Read the text and answer the following questions:

1. What is a protocol?

2. Should the coin be tossed doubly?

3. How do Alice and Bob flip a fair coin?

4. Are there any variants of coin-flip protocol?

In cryptography, a protocol is essentially an algorithm specifying—in a
certain order—the steps that involved parties must take. We have seen key-
exchange and related protocols already. Here we investigate an intriguing cultural
application of number-theoretical protocols. How can one toss a coin, fairly, over
the telephone? Or play poker among n individuals, playing “blind” on a network?
We assume the worst: That no party trusts any other, yet a decision has to be
reached, as one would so reach it via a coin toss, with one party calling heads or
tails. It turns out that such a remote tossing is indeed possible, using properties of
certain congruencies.

Incidentally, the motivation for even having a coin-flip protocol is obvious,
when one imagines a telephone conversation—say between two hostile parties
involved in a lawsuit—in which some important result accrues on the basis of a
coin flip, meaning a random bit whose statistics cannot be biased by either party.
Having one party claim they just flipped a head, and therefore won the toss, is
clearly not good enough. Everyone must be kept honest, and this can be done via
adroit application of congruences involving primes or certain composites. Here is
one way to proceed, where we have adapted some ideas from [Bressoud and
Wagon 2000] on simple protocols:

26

Algorithm 8.1.11 (Coin-flip protocol). Alice and Bob wish to “flip a fair coin,”
using only a communication channel. They have agreed that if Bob guesses
correctly, below, then Bob wins, otherwise Alice wins.

1. [Alice selects primes]

Alice chooses two large primes p < g, forms the number n = pqg, and chooses
a random prime r such that (n/r)=—1;

2. [Alice sends Bob partial information]

Alice sends Bob nandr;

3. [Bob chooses]

Bob makes a choice between “the smaller prime factor of n is a quadratic
residue mod r” and “the larger prime factor of n is a quadratic residue mod r”” and
sends this choice to Alice;

4. [Alice announces winner]

Alice announces whether Bob is correct or not, and sends him the primes p,
g so that Bob can see for himself that she is not cheating;

It is interesting to investigate the cryptographic integrity of this algorithm.
Though we have cast the above algorithm in terms of winner and loser, it is clear
that Alice and Bob could use the same method just to establish a random bit, say
“0” if Alice wins and “1”” if Bob wins. There are many variants to this kind of coin-
flip protocol. For example, there is a protocol in [Schneier 1996] in which four
square roots of a number n = pq are generated by Alice and sent to Bob, with Bob
having generated a random square modulo n. This scenario is not as simple as
Algorithm 8.1.11, but it is replete with interesting issues; e.g., one can extend it to
handle the peculiar Micali scenario in which Bob intentionally loses [Schroeder
1999]. There are also algorithms based on Blum integers and, generally, the fact of
a product pqg allowing multiple roots (see Exercise 8.7). These ideas can be
extended in a natural way to a poker-playing protocol in which a number of players
claim what poker hands they possess, and so on [Goldwasser and Micali 1982].

(Crandall R., Pomerance C. Prime Numbers/A Computational Perspective.-
Springer Science+ Business Media, Inc. 2005,-598pp)

27

. In pairs, look at the given words. Try to guess what they mean from the

context. Then check with your dictionary or the teacher.

Hostile parties, toss a coin, play ‘blind’, random bit, to be biased, to flip a head, to

make a choice

IV. Match the words in A with their synonyms in B.

A. accrue, adroit, announce, issue, random, remote, to be replete with

B. accidental, compile, declare, distant, dexterous, to be full with, problem

V. Match the phrases (1-6) with their equivalents (a-f).

1. | Another lay treatment about | a. | B mocnenneii pabote

2. | Answer roughly the question | b. | Ipyroe onricanue o...

3. | The answer is relevant C. | [Ipubmu3uTeIpHO OTBETUTH HA BOIIPOC
4. | In the latter exposition d. | CranmapTHBII IpuMep

5. | To be not uncommon e. | OTBeT Ha 3TOT BaKHBIN BOIIPOC

6. | A typical instance f. | SIBIATHCS MUPOKOTOCTYITHBIM

V1. Make the sentences of your own using the phrases from exercise V.

VII. Make written translation of the second paragraph.

VIII. Translate from Russian into English.

1. TIpoTOKOJIOM SIBJISIETCS aJITOPUTM.

2. ANTopuTM yKa3bIBaeT B OMPENEICHHOM TOPSIKE T€ IIard, KOTOPhIe HYKHO

MPEANPUHSATD.

3. Heo06xoaumMo KOHTPOJIUPOBATH YECTHOCTh KaXJ0T0 yUYaCTHUKA.

4. bo6 nemaet BEIOOP M OTIIPABIISIET €ro AJwce.

28

5. IlpoTokon moaOpacbiBaHNsI MOHET UMEET MHOXKECTBO BAPHAHTOB.

IX. Find 3-4 key words in every paragraph. Write down the sentences of your

own using these words. They should give the main idea of each paragraph.

X. Make up a plan of the text and summarize the text in brief.

Unit 6
Random-number generation

I. Before you read the text look at the words given and try to predict what the text
IS going to be about:

e Randomness

e Probability theory

e Deterministic generator

e To decrypt

e Unbreakable

I1. Read the text to check your ideas.

The problem of generating random numbers goes back, of course, to the
dawn (1940s, say) of the computer age. It has been said that to generate random
numbers via machine arithmetic is to live, in the words of J. von Neumann, “in a
state of sin.” Though machines can ensure nearly random statistics in many senses,
there is the problem that conventional machine computation is deterministic, so the
very notion of randomness is suspect in the world of Turing machines and serial
programs. If the reader wonders what kind of technology could do better in the
matter of randomness (though still not “purely” random in the sense of probability
theory), here is one exotic example: Aim a microwave receiving dish at the remote

heavens, listening to the black-body “fossil” radiation from the early cosmos, and

29

digitize that signal to create a random bitstream. We are not claiming the cosmos is
truly “random,” but one does expect that a signal from remote regions is as
“unknowable” as can be.

In modern times, the question of true randomness has more import than ever,
as cryptographic systems in particular often require numbers that are as random, or
as seemingly random, as can be. A deterministic generator that generates what
looks to an eavesdropper like random numbers can be used to build a simple
cryptosystem. Create a random bitstream. To encrypt a message, take the logical
exclusive- or of bits of the message with bits of the random bitstream. To decrypt,
do the exclusive-or operation again, against the same random bitstream. This
cryptosystem is unbreakable, unless certain weaknesses are present—such as, the
message is longer than the random stream, or the same random stream is reused on
other messages, or the eavesdropper has special knowledge of the generator, and so
on. In spite of such practical pitfalls, the scheme illustrates a fundamental credo of
cryptography: Somehow, use something an eavesdropper does not know.

It seems that just as often as a new random-number generator is developed,
so, too, is some older scheme shown to be nonrandom enough to be, say,
“insecure,” or yield misleading results in Monte Carlo simulations. We shall give a
brief tour of random number generation, with a view, as usual, to the involvement
of prime numbers.

(Crandall R., Pomerance C. Prime Numbers/A Computational Perspective.-

Springer Science+ Business Media, Inc. 2005,-598pp)

I11. Say whether these sentences are true or false. Try not to refer to the text.

1. The problem of random-number generation is a new one.

2. To generate random number with the help of machine arithmetic is to live in

heavens.
3. Nowadays the question of true randomness is insignificant.

4. A deterministic generator cannot be used to build a simple crypto-system.

30

5. To encrypt and to decrypt you have to do the same operations.

IV. Explain the meaning of the words given or find synonyms. Consult your
dictionary or teacher.
Generate, ensure, conventional, suspect, digitize, unknowable, eavesdropper,

decrypt, pitfall, illustrate, microwave receiving dish, fossil radiation, nonrandom.

V. Match the phrases (1-6) with their equivalents (a-f).

1. | To put it roughly... A. | IToMuMO COBpEeMEHHBIX
JOCTHXKCHUN

2. | The relevance is... B. | X0Ts coBpeMeHHbIE TEXHOJIOTUN

3. | Similarly ... ['py6o roBops

4. | It is amusing ... D. | CyuiecTBEHHBIM MOMEHTOM
SIBIISICTCS

5. | While modern technology... AHAJIOTUYHBIM 00Pa3oM. ..

6. | Alongside these modern | F. | Y 1uBUTENBHO, UTO. ..

achievements...
VI. Translate from Russian into English.

1. KoMmbioTepsl B HEKOTOPOM CMBICJIIE MOTYT TapaHTHPOBATh IOYTH

CIIy4ailiHOE pacIpeieJICHUE.

2. N3BecTHBIE CIIOCOOBI

KOMIIBIOTCPHBIX BBIUMCIICHUM O6J'I3I[aIOT

JNE€TEPMHUHUPOBAHHOCTBIO.

3. Mb1 mpexanosnaraem,

qTo

CHUI'Hall, HBHy‘{aeMblﬁ OTAaJICHHBIMH

raJJakTuKaMn HAaCTOJIbKO HETIPEACKA3yCM, HACKOJIBbKO 3TO BO3MOKHO.

4. CerogHsi MOJEIMPOBAHUE PEATHLHOM CIIyYaHOCTH BaKHO KaK HUKOT/A.

5. Taxas kpunrocucremMa B IPUHIUIIE 3aIUIICHA OT B3JIOMA.

31

Unit7

Numbers

Text1l
I. Skim the text quickly. What is the main idea of this text?

We have indicated that prime numbers figure into modern cryptography—
the science of encrypting and decrypting secret messages. Because many
cryptographic systems depend on prime-number studies, factoring, and related
number-theoretical problems, technological and algorithmic advancement have
become paramount. Our ability to uncover large primes and prove them prime has
outstripped our ability to factor, a situation that gives some comfort to
cryptographers. As of this writing, the largest number ever to have been proved
prime is the gargantuan Mersenne prime 225964951 — 1, which can be thought of,
roughly speaking, as a “thick book™ full of decimal digits. The kinds of algorithms
that make it possible to do speedy arithmetic with such giant numbers is discussed
in Chapter 8.8. But again, alongside such algorithmic enhancements come machine
improvements. To convey an idea of scale, the current hardware and algorithm
marriage that found each of the most recent “largest known primes” performed
thus: The primality proof/disproof for a single candidate 2q —1 required in 2004
about one CPUweek, on a typical modern PC (see continually updating website
[Woltman 2000]). By contrast, a number of order 220000000 would have required,
just a decade earlier, perhaps a decade of a typical PC’s CPU time! Of course, both
machine and algorithm advances are responsible for this performance offset. To
convey again an idea of scale: At the start of the 21st century, a typical workstation
equipped with the right software can multiply together two numbers, each with a
million decimal digits, in a fraction of a second. As explained at the end of Section
9.5.2, appropriate cluster hardware can now multiply two numbers each of a billion
digits in roughly one minute.

(Crandall R., Pomerance C. Prime Numbers/A Computational Perspective.-
Springer Science+ Business Media, Inc. 2005,-598pp)

32

I1. Write down a short summary of the text (5-6 sentences).
I11. Give the title to the text.

1V. Make a written translation of the text.
Text 2. Smooth numbers

I. Before you read the text answer the following questions.
What kind of numbers do you know? Give examples.
What are smooth numbers?
I1. Read the text to check your answers.
Smooth numbers are extremely important for our computational interests, notably
in factoring tasks. And there are some fascinating theoretical applications of
smooth numbers, just one example being applications to a celebrated problem upon
which we just touched, namely the Waring problem [Vaughan 1989]. We begin
with a fundamental definition:
Definition 1.4.8. A positive integer is said to be y-smooth if it does not have any
prime factor exceeding .
What is behind the usefulness of smooth numbers? Basically, it is that for y not too
large, the y-smooth numbers have a simple multiplicative structure, yet they are
surprisingly numerous. For example, though only a vanishingly small fraction of
the primes in [1, x] are in the interval [1,V x], nevertheless more than 30% of the
numbers in [1, x] are V x-smooth (for x sufficiently large). Another example
illustrating this surprisingly high frequency of smooth numbers: The number of
(In2 x)-smooth numbers up to x exceeds v x for all sufficiently large numbers x.
These examples suggest that it is interesting to study the counting function for
smooth numbers. Let

w(x, y) = #{1 <n <x : nis y-smooth}. (1.42)
Part of the basic landscape is the Dickman theorem from 1930:

33

Theorem 1.4.9 (Dickman). For each fixed real number u > 0, there is a real number
p(u) > 0 such that
w(X, x1/u) ~ p(u)x.
Moreover, Dickman described the function p(u) as the solution of a certain
differential equation: It is the unique continuous function on [0,0) that satisfies (A)
(u)=1for 0 <u <1 and (B) foru> 1, p'(u) = —p(u — 1)/u. In particular, p(u) =
I-In u for 1 < u < 2, but there is no known closed form (using elementary
functions) for p(u) for u > 2. The function p(u) can be approximated numerically
(cf. Exercise 3.5), and it becomes quickly evident that it decays to zero rapidly. In
fact, it decays somewhat faster than u—u, though this simple expression can stand
in as a reasonable estimate for p(u)in various complexity studies. Indeed, we have
Inp(u) ~—ulnu. (1.43)
Theorem 1.4.9 is fine for estimating (X, y) when X, y tend to infinity with u
= Inx/ In y fixed or bounded. But how can we estimate y x, X1/ In In x or y X, e
In x or vy X, In2 x? Estimates for these and similar expressions became crucial
around 1980 when subexponential factoring algorithms were first being studied
theoretically (see Chapter 6). Filling this gap, it was shown in [Canfield et al.
1983] that
w(x, x1/u)= xu —u+o(u) (1.44)
uniformly as u—oo and u < (1—€) Inx/ In In x. Note that this is the expected
estimate, since by (1.43) we have that p(u) = u—u+o(u). Thus we have a reasonable
estimate for w(x,y) when y>In1+ x and x is large.
It is also possible to prove explicit inequalities for y(x, y). For example,
in [Konyagin and Pomerance 1997] it is shown that for all x >4 and 2 <x1/u <x,
wx, x1/u>xlnu x. (1.45)
The implicit estimate here is reasonably good when x1/u = Inc x, withc > 1
fixed.
As mentioned above, smooth numbers arise in various factoring algorithms,
and in this context they are discussed later in this book. The computational

problem of recognizing the smooth numbers in a given set of integers is discussed

34

in Chapter 3. For much more on smooth numbers see the new survey article
[Granville 2004b].

(Crandall R., Pomerance C.Prime Numbers/A Computational Perspective.-

Springer Science+ Business Media, Inc. 2005,-598pp)

I11. Give Russian equivalents to the given phrases.
Extremely important, multiplicative structure, vanishingly small, decay to zero,
tend to infinity, reasonable estimate, factoring algorithms.
IV. Fill in the gaps with the words given.
1. Computational number theory abounds with examples of sequences N of
integers from which we need to extract y-smooth numbers.
2. These hypotheses appear to be fairly ad hoc, tied in to the algorithms.
3. Such a range is certainly dependent on the coefficients of f, but we need results
in which this dependence is simply stated and easily applicable.
4. There are very few results in the literature with precise inequalities where every
constant is explicit.
5. In general, if we wish to determine the number of lattice points inside an n-

dimensional tetrahedron, then we can get good estimates using a little geometry.

V. Write down a short summary of the text (5-6 sentences).

Unit 8
Quasi-Monte Carlo (qMC) methods

I. Read the quotation and comment on it.
Nothing in Nature is random... A thing appears random only through the
incompleteness of our knowledge.

Spinoza, Ethics |

35

I1. Before you read the text say what you know about Monte Carlo methods.

Who would have guessed, back in the times of Gauss, Euler, Legendre, say,
that primes would attain some practical value in the financial-market analysis of
the latter twentieth century? We refer here not to cryptographic uses— which
certainly do emerge whenever money is involved—but quasi-Monte Carlo science
which, loosely speaking, is a specific form of Monte Carlo (i.e., statistically
motivated) analysis. Monte Carlo calculations pervade the fields of applied
science.

The essential idea behind Monte Carlo calculation is to sample some large
continuous (or even discrete, if need be) space—in doing a multidimensional
integral, say—with random samples. Then one hopes that the “average” result
iIs close to the true result one would obtain with the uncountable samples
theoretically at hand. It is intriguing that number theory—in particular prime
number study—can be brought to bear on the science of quasi-Monte Carlo
(gMC). The techniques of gqMC differ from traditional Monte Carlo in that one
does not seek expressly random sequences of samples. Instead, one attempts to
provide quasirandom sequences that do not, in fact, obey the strict statistical rules
of randomness, but instead have certain uniformity features attendant on the
problem at hand.

Although it is perhaps overly simplistic, a clear way to envision the
difference between random and qMC is this: Random points when dropped can be
expected to exhibit “clumps” and “gaps,” whereas qMC points generally avoid
each other to minimize clumping and tend to occupy previous gaps. For these
reasons qMC points can be—depending on the spatial dimension and precise
posing of the problem—superior for certain tasks such as numerical integration,
min—max problems, and statistical estimation in general.

(Crandall R., Pomerance C.Prime Numbers/A Computational Perspective.-
Springer Science+ Business Media, Inc. 2005,-598pp)

36

1. Find 3-4 key words in every paragraph. Write down the sentences of your

own using these words. They should give the main idea of each paragraph.

IV. Make up a plan of the text and summarize the text in brief.

V. Fill in the gaps with the words given.
Analysis, applicability, applied, computer age, definition, numerical method,
practical implementation, random.

1. The Monte Carlo method (or “method of statistical trials”’) may be described

in simple terms as a based on random sampling.

2. Statisticians have intuitively used its principle long before 1940s, but it was

only the that could turn into a systematic and viable technique.

3. The main reason for the popularity of the Monte Carlo method is its to

a never ending variety of problems in numerical analysis, statistics,

mathematics, particle physics, engineering, systems , and so on.

4, Forthe of the Monte Carlo method, the fundamental question is,
of course, how to produce a sample.

5. There is no ready- made answer since no satisfactory of randomness
exists.

V1. Make a written translation of the sentences in exercise V.

Unit 9.
Operating systems. Introduction.
I. Before you read the text answer the following questions:
What is an operating system, what is its main function?
What are the most popular kinds of operating systems nowadays?

Can you name their advantages and disadvantages?

37

I1. Read the text and compare your answers with the information in the text.

Without its software, a computer is basically a useless lump of metal. With
its software, a computer can store, process, and retrieve information; play music
and videos; send e-mail, search the Internet; and engage in many other valuable
activities to earn its keep. Computer software can be divided roughly into two
kinds: system programs, which manage the operation of the computer itself, and
application programs, which perform the actual work the user wants. The most
fundamental system program is the operating system, whose job is to control all
the computer's resources and provide a base upon which the application programs
can be written. <...>

A modern computer system consists of one or more processors, some main
memory, disks, printers, a keyboard, a display, network interfaces, and other
input/output devices.<...> Many years ago it became abundantly clear that some
way had to be found to shield programmers from the complexity of the hardware.
The way that has evolved gradually is to put a layer of software on top of the bare
hardware, to manage all parts of the system, and present the user with an interface
or virtual machine that is easier to understand and program. This layer of software
IS the operating system.

The placement of the operating system is shown in Fig. 1-1. At the bottom is
the hardware, which, in many cases, is itself composed of two or more levels (or
layers). The lowest level contains physical devices, consisting of integrated circuit
chips, wires, power supplies, cathode ray tubes, and similar physical devices. How

these are constructed and how they work is the province of the electrical engineer.

Banking Airline Web browser | Application programs
System Reservation
Compilers Editors Command "L System programs
interpreter

Operating system

Machine language — Hardware

Microarchitecture
Physical devices

38

Fig. 1-1. A computer system consists of hardware, system programs, and
application programs.

Next comes the microarchitecture level, in which the physical devices are
grouped together to form functional units. Typically this level contains some
registers internal to the CPU (Central Processing Unit) and a data path containing
an arithmetic logic unit. In each clock cycle, one or two operands are fetched from
the registers and combined in the arithmetic logic unit (for example, by addition or
Boolean AND). The result is stored in one or more registers. On some machines,
the operation of the data path is controlled by software, called the microprogram.
On other machines, it is controlled directly by hardware circuits.

The purpose of the data path is to execute some set of instructions. Some
of these can be carried out in one data path cycle; others may require multiple data
path cycles. These instructions may use registers or other hardware facilities.
Together, the hardware and instructions visible to an assembly language
programmer form the ISA (Instruction Set Architecture) This level is often
called machine language.

The machine language typically has between 50 and 300 instructions, mostly
for moving data around the machine, doing arithmetic, and comparing values. In
this level, the input/output devices are controlled by loading values into special
device registers. For example, a disk can be commanded to read by loading the
values of the disk address, main memory address, byte count, and direction (read
or write) into its registers. In practice, many more parameters are needed, and the
status returned by the drive after an operation may be complex. Furthermore, for
many 1/O (Input/Output) devices, timing plays an important role in the
programming.

The major function of the operating system is to hide all this complexity and
give the programmer a more convenient set of instructions to work with. For
example, read block from file is conceptually much simpler than having to worry

about the details of moving disk heads, waiting for them to settle down, and so on.

39

On top of the operating system is the rest of the system software. Here we
find the command interpreter (shell), window systems, compilers, editors, and
similar application independent programs. It is important to realize that these
programs are definitely not part of the operating system, even though they are
typically supplied preinstalled by the computer manufacturer, or in a package with
the operating system if it is installed after purchase. This is a crucial, but subtle,
point. The operating system is (usually) that portion of the software that runs in
kernel mode or supervisor mode. It is protected from user tampering by the
hardware (ignoring for the moment some older or low-end microprocessors that do
not have hardware protection at all). Compilers and editors run in user mode. If a
user does not like a particular compiler, he is free to write his own if he so chooses;
he is not free to write his own clock interrupt handler, which is part of the
operating system and is normally protected by hardware against attempts by users
to modify it.

This distinction, however, is sometimes blurred in embedded systems (which
may not have kernel mode) or interpreted systems (such as Java-based systems that
use interpretation, not hardware, to separate the components). Still, for traditional
computers, the operating system is what runs in kernel mode.

<...> Finally, above the system programs come the application programs.
These programs are purchased (or written by) the users to solve their particular
problems, such as word processing, spreadsheets, engineering calculations, or

storing information in a database.

(Modern Operating Systems, Second edition by A.S.Tanenbaum p.28-30)
http://it.tdt.edu.vn/~tttin/giangday/HDH/Modern%200perating%20Systems.pdf

I11. Match the terms and their definitions:

1. hardware a. software that communicates with hardware enabling the

applications to run

2. input/output | b. program-addressable storage that is directly controlled

40

device by and generally contained in the CPU

3. operating c. aprogram used for particular application, not a system

system program

4. main d. mechanical, magnetic and electronical devices

memory comprising a computer system

5. application |e. any of various devices used to enter information and

program instructions into a computer for storage or processing and
to deliver the processed data to a human operator

6. machine f. programs that are used to direct the operation of a

language computer, as well as documentation giving instructions on
how to use them

7. software g. a coding system built into the hardware of a computer,
requiring no translation before being run

IV. Find derivatives for the following words. Explain their meaning or translate

into Russian:
1. to instruct adjective 2 nouns
2. editor verb noun
3. to apply — 2 nouns
4. todefine adverb noun
5. bed adjective verb
6. to process 2 nouns —
7. concept adjective adverb

V. Complete the gaps in the following sentences:
1. Computer ... can be divided roughly into two kinds: system programs, which
manage the operation of the computer itself, and ... programs.

2. A modern computer system consists of one or more ..., some main memory,

disks, printers, a keyboard, a display, network interfaces, and other ... devices.

41

3. The lowest level contains

... devices, consisting of integrated circuit chips,

wires, power supplies and similar physical devices.

4. In the

units.

... level the physical devices are grouped together to form functional

5. Together, the hardware and instructions visible to an assembly language

programmer form the Instruction

... Architecture.

6. The major function of the ... system is to hide all this complexity and give the

programmer a more convenient set of instructions to work with.

7. The operating system is usually that portion of the software that runs in ...

mode or ... mode.

8. ... programs are purchased or written by users to solve their particular
problems, such as word processing, spreadsheets, engineering calculations, or

storing information in a database.

VI. Match the first half of each sentence with the most appropriate second half

1. Without its software,

a. is the province of the electrical
engineer.

2. The most fundamental system
program is the operating system

b. from the registers and combined in the
arithmetic logic unit.

3. A computer can store, process, and

c. and similar application independent

constructed and how they work

retrieve information; play music and | programs are definitely not part of
videos; send e-mail, search the | the operating system.

Internet

4. How physical devices are|d. acomputer is basically a useless lump

of metal.

5. In each clock cycle, one or two
operands are fetched

e. whose job is to control all the
computer's resources and provide a base
upon which the application programs can
be written.

6. The machine language typically
has between 50 and 300 instructions,
mostly for

f. due to its software.

7. It is important to realize that such
programs as the command interpreter,
window systems, compilers, editors,

g. moving data around the machine,
doing arithmetic, and comparing values.

42

VII. Answer the following questions:

What kinds of things can computer do with its software?

What two main parts can all computer software divided into?

What is the main function of the operating system?

How many layers are in the diagram of the computer system offered in the text?
What is the lowest layer of a computer system?

What is the purpose of the data path?

How many instructions does the machine language typically have?

O N o a0 Bk~ W N E

Can we consider the command interpreter (shell), window systems, compilers,
editors, and similar programs as a part of the operating system?.

9. Which layer comes above the system programs?

VIII. Translate sentences from Russian into English:

1. Bce mporpammHoe oOecriedeHre MPUHSTO JEIUTh Ha JIBE YaCTHU: NPUKIAOHOE U
cucmemmoe.

2. Tlom cuUCTEeMHBIM TPOrpaMMHBIM OOecleueHneM OOBIYHO TOHHUMAIOT
MpOTrpaMMBbl, CIIOCOOCTBYIONINE (PYHKIIMOHUPOBAHUIO U Pa3pabOTKE MPUKIATHBIX
POTrPaMM.

3. VYKe MHOTO JIET Ha3aJ CTaJo SICHO, YTO HYXKHO ObUIO HAWTH KaKOW-TO BBIXO/I,
YTOOBI OrPAIUTh MPOrPAMMHUCTA OT CIOKHOCTEHN anmapaTHOro 00ecreuyeHus..

4. OmnepanOHHasE CUCTEMa — 3TO KOMIUIEKC TPOTPaMM, KOTOpBIE, C OJHOU
CTOPOHBI, BBICTYNAIOT KakK HWHTEpQEnc MeXaAy yCTPOHCTBAMU BBIYUCIUTEIbHON
CUCTEMBI U MPUKIIATHBIMU IPOrPaMMaMHU, a ¢ IPYrol CTOPOHbI — MpeTHa3HAYECHbI
JUISl YIIPABIICHUS] YCTPOMCTBAMM, BBIUHUCIUTEIBHBIMHU IMPOIECCAMH, a TAKKE IJIS
3¢ (HEeKTUBHOTO pacnpeieIeHUs] BBIYUCIUTEIbHBIX PECYPCOB.

5. C 1990-x rooB Hanbosiee pacIpoCTPAaHEHHBIMU OTIEPAIIMOHHBIMU CUCTEMAMU
ABIIAIOTCS cucTeMbl cemeiictBa Windows u cucremsr kiracca UNIX (ocobenno
Linux u Mac OS).

7. C touku 3penus (in terms of longevity) monrosnerus Hu oaHA OnepanlOHHAS

CUCTEMA JJI1 MUKPOKOMITBIOTEPOB HE MOKET MpUOIU3UThHCs K DOS.

43

http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80%D0%BD%D0%B0%D1%8F_%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B0
http://ru.wikipedia.org/wiki/%D0%98%D0%BD%D1%82%D0%B5%D1%80%D1%84%D0%B5%D0%B9%D1%81
http://ru.wikipedia.org/wiki/%D0%90%D0%BF%D0%BF%D0%B0%D1%80%D0%B0%D1%82%D0%BD%D0%BE%D0%B5_%D0%BE%D0%B1%D0%B5%D1%81%D0%BF%D0%B5%D1%87%D0%B5%D0%BD%D0%B8%D0%B5
http://ru.wikipedia.org/wiki/%D0%92%D1%8B%D1%87%D0%B8%D1%81%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0
http://ru.wikipedia.org/wiki/%D0%92%D1%8B%D1%87%D0%B8%D1%81%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0
http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B8%D0%BA%D0%BB%D0%B0%D0%B4%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%BD%D0%BE%D0%B5_%D0%BE%D0%B1%D0%B5%D1%81%D0%BF%D0%B5%D1%87%D0%B5%D0%BD%D0%B8%D0%B5
http://ru.wikipedia.org/wiki/%D0%92%D1%8B%D1%87%D0%B8%D1%81%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81
http://ru.wikipedia.org/wiki/%D0%92%D1%8B%D1%87%D0%B8%D1%81%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5_%D1%80%D0%B5%D1%81%D1%83%D1%80%D1%81%D1%8B

8. C momenta mosBaenuss B 1981 romy DOS pacnpoctpanuiack HacTOIBKO
HIMPOKO, UTO 3aBOEBAjIa MPABO CUMTATHCS camoil monyssipHoi B mupe OC.

9. HecmoTtps Ha HEeKkoTOpbIe cBOM HegocTaTtku, DOS mpogoiskaer cylecTBoBaTh U
pa3BUBATHCA.

10. Bcero 3a Heckonbko jer cucreMa MS DOS mnponuia myte OT MPOCTOrO
3arpy3uMkKa [0 YHUBEPCAIbHOW CIIOKHUBIICHCS ONEPAIIMOHHON CHUCTEMBI JIs
NIEPCOHATBHBIX KOMITBIOTEPOB, TIOCTPOCHHBIX Ha 0a3e Mukporpoieccopos Intel
8086.

IX. Make up a plan to the text and try to write a short summary of the text, using

one sentence for each item of the plan.

Unit 10.
The Operating System Functions
I. Before you read answer the following questions:
1. Without having a look at the text, can you name two most important functions of
the operating system?
2. Can you agree with the statement that operating system is a kind of bridge
between the programmer (user) and the computer? If not, what other comparisons

can you think of?

I1. Read the text and compare your answers with the information in the text.

Most computer users have had some experience with an operating system,
but it is difficult to pin down precisely what an operating system is. Part of the
problem is that operating systems perform two basically unrelated functions,
extending the machine and managing resources. Let us now look at both.

The Operating System as an Extended Machine. As mentioned earlier,
the architecture (instruction set, memory organization, 1/0, and bus structure) of
most computers at the machine language level is primitive and awkward to

program, especially for input/output. <...>

44

Without going into the real details, it should be clear that the average
programmer probably does not want to get too intimately involved with the
programming of floppy disks (or hard disks, which are just as complex and quite
different). Instead, what the programmer wants is a simple, high level abstraction
to deal with. In the case of disks, a typical abstraction would be that the disk
contains a collection of named files. Each file can be opened for reading or writing,
then read or written, and finally closed. Details such as whether or not recording
should use modified frequency modulation and what the current state of the motor
Is should not appear in the abstraction presented to the user.

The program that hides the truth about the hardware from the programmer
and presents a nice, simple view of named files that can be read and written is, of
course, the operating system. Just as the operating system shields the programmer
from the disk hardware and presents a simple file-oriented interface, it also
conceals a lot of unpleasant business concerning interrupts, timers, memory
management, and other low-level features. In each case, the abstraction offered by
the operating system is simpler and easier to use than that offered by the
underlying hardware.

In this view, the function of the operating system is to present the user with
the equivalent of an extended machine or virtual machine that is easier to
program than the underlying hardware. How the operating system achieves this
goal is a long story, which we will study in detail throughout this book. To
summarize it in a nutshell, the operating system provides a variety of services that
programs can obtain using special instructions called system calls.

The Operating System as a Resource Manager. Modern computers
consist of processors, memories, timers, disks, mice, network interfaces, printers,
and a wide variety of other devices. The job of the operating system is to provide
for an orderly and controlled allocation of the processors, memories, and 1/0
devices among the various programs competing for them.

Imagine what would happen if three programs running on some computer all

tried to print their output simultaneously on the same printer. The first few lines of

45

printout might be from program 1, the next few from program 2, then some from
program 3, and so forth. The result would be chaos. The operating system can
bring order to the potential chaos by buffering all the output destined for the printer
on the disk. When one program is finished, the operating system can then copy its
output from the disk file where it has been stored to the printer, while at the same
time the other program can continue generating more output, oblivious to the fact
that the output is not really going to the printer (yet).

When a computer (or network) has multiple users, the need for managing
and protecting the memory, 1/0O devices, and other resources is even greater, since
the users might otherwise interfere with one another. In addition, users often need
to share not only hardware, but information (files, databases, etc.) as well. In short,
this view of the operating system holds that its primary task is to keep track of who
IS using which resource, to grant resource requests, to account for usage, and to
mediate conflicting requests from different programs and users.

Resource management includes multiplexing (sharing) resources in two
ways: in time and in space. When a resource is time multiplexed, different
programs or users take turns using it. First one of them gets to use the resource,
then another, and so on. For example, with only one CPU and multiple programs
that want to run on it, the operating system first allocates the CPU to one program,
then after it has run long enough, another one gets to use the CPU, then another,
and then eventually the first one again. Determining how the resource is time
multiplexed who goes next and for how long is the task of the operating system.
Another example of time multiplexing is sharing the printer. When multiple print
jobs are queued up for printing on a single printer, a decision has to be made about
which one is to be printed next.

The other kind of multiplexing is space multiplexing. Instead of the
customers taking turns, each one gets part of the resource. For example, main
memory is normally divided up among several running programs, so each one can
be resident at the same time (for example, in order to take turns using the CPU).

Assuming there is enough memory to hold multiple programs, it is more efficient

46

to hold several programs in memory at once rather than give one of them all of it,
especially if it only needs a small fraction of the total. Of course, this raises issues
of fairness, protection, and so on, and it is up to the operating system to solve
them. Another resource that is space multiplexed is the (hard) disk. In many
systems a single disk can hold files from many users at the same time. Allocating
disk space and keeping track of who is using which disk blocks is a typical
operating system resource management task.

(Modern Operating Systems, Second edition by A.S.Tanenbaum p.31-33)
http://it.tdt.edu.vn/~tttin/giangday/HDH/Modern%200perating%20Systems.pdf

I11. Close the text and tell whether the following sentences are true or false,
correct the false statements:

1. Every user deals with the operating system when working at their computer.

2. All programmers are eager to get intimately involved into all details of the
computer hardware.

3. The operating system shields the programmer from the programming work
itself.

4. The operating system offers a variety of services that can be obtained using
special instructions called system requests.

5. ltis the operation system that is responsible for all input/output operations.

6. Multiple users never interfere with one another when they share a network.

7. Determining how the resource is time multiplexed who goes next and for how
long is the task of the system engineer.

8. When several programs are held in memory at once, it is up to the operating
system to solve issues of fairness, protection, and so on.

9. In a typical system a single disk can hold files from only one user at the same

time.

1V. Match the terms and their definitions:

1. processor a. a disk made of rigid magnetizable material that is

47

(or CPU) used to store data for computers

2. bus b. a collection of related data or program records stored
on some input/output or auxiliary medium

3. hard disk C. an output device that produces a paper copy of
alphanumeric or graphic data

4. file d. the part of a computer that performs logical and
arithmetical
operations on the data as specified in the instructions

5. memory e. a communication system that transfers data between

resident components inside a computer or between computers.
This expression covers all related hardware components
(wire, optical fiber, etc.) and software, including
communication protocol.

6. printer f. akind op programs that the operating system is not

permitted to swap out to a storage device, they will

always remain in memory

V. Find derivatives for the following words. Explain their meaning or translate

into Russian:
1. precise adverb noun
2. torelate 2 adjectives noun
3. to modulate adjective noun
4. to compete adjective 2 nouns
5. to manage adjective 2 nouns
6. to protect adjective 2 nouns
7. to allocate adjective 2 nouns
V1. Complete the gaps in the following sentences:
1. Itisdifficultto... ... precisely what an operating system is.

48

2. The operating system performs two basically ... functions: extending the
machine and managing resources.

3. The program that hides the truth about the ... from the programmer and presents
a nice, simple view of named files that can be read and written is, of course, the
operating system.

4. The function of the operating system is to present the user with the equivalent
of an ... machine or ... machine that is easier to program than the underlying
hardware.

5. The job of the operating system is to provide for an orderly and controlled ... of

the processors, memories, and 1/O devices among the various programs ... for
them.
6. When a computer (or network) has ... users, the need for managing and

protecting the memory, 1/O devices, and other resources is even greater
7. When aresource is time ... , different programs or users take turns using it.

8. The other kind of multiplexing is ... multiplexing.

9. For example, main memory is normally divided up among several running
programs, so each one can be ... at the same time

VII. Match the first half of each sentence with the most appropriate second half

1.The architecture of most computers | a. simple, high level abstraction to deal
at the machine language level is with.

2. The average programmer probably | b. using special instructions called ystem
does not want to get too intimately calls.

3. What the programmer wantsisa | c. primitive and awkward to program.

4. The operating system shields the | d. (files, databases, etc.) as well.
programmer from the disk
5. The operating system provides a | e. intwo ways: in time and in space.
variety of services that programs can

obtain
6. Users often need to share not only | f. involved with the programming of
hardware, but information hardware details.

VII1. Answer the following questions:

49

1. Why is it difficult to pin down precisely what an operating system is?

2. Why does the operating system hide the truth about the hardware from the
programmer?

3. What kind of physical devices do modern computers systems consist of?

4. What is the second function of the operating system?

5. What would happen if three programs running on some computer all tried to
print their output simultaneously on the same printer?

6. What information does the operating system need to keep track of when the
computer (or network) has multiple users?

7. What is space multiplexing?

8. What kind of problems might arise when there are several programs in memory
at once?

9. Can you give an example of a typical operating system resource management
task?

IX. Translate sentences from Russian into English:

1. OnepanuoHHasi CUCTeMa — 3TO KOMILJIEKC CHUCTEMHBIX MpOrpamMM, KOTOpPBIC
MpeAHa3HAYeHbl OPTraHU30BATh B3aUMOJCHCTBUE MOJIB30BATENS C KOMIIBIOTEPOM U
BBITIOJTHEHUE BCEX JIPYTUX MPOTPaAMM.

2. IlepBas 3amaua OC — opraHm3anus CBs3U, OOIIEHUS IOJH30BATENSI C
KOMIIBIOTEPOM B LIEJIOM U €T0 OTJI€JIbHBIMUA YCTPOICTBAMM.

3. OmepanuoHHas cuUCTeMa MPEACTaBISETCS IOJB30BATENI0 BUPTYAIbHOMN
MAIIMHOM, C KOTOPOW HAaMHOTO NPOIIE HUMETh AEJI0, YEM HEMOCPEACTBEHHO C
000py1I0BaHUEM KOMIIBIOTEPA.

4. OmnepallioHHasi CUCTEMa JICHCTBYET KaK MEHEIKEpP PECypCOB, OCYIIECTBISET
pacrpenesneHue MmpoueccopoB, MaMsITH U JPYTUX PECYPCOB MEXAY Pa3IMUYHBIMU
nporpaMMamMu, UX UCIOJIb3YIOIIUMH.

5. B 3a/1auu onepanroHHOM CUCTEMbl TaKKe BXOJUT arpy3ka MporpaMm B MaMsTh
1 o0ecrieueHre UX BBHITTOTHEHHUS.

6. @aiiibl, coctaBisromue OC, XpaHIATCsA HA TUCKE, TOITOMY CUCTEMA HA3bIBACTCS
nuckoBoit oneparmonHoi (JIOC).

50

http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80%D0%BD%D0%B0%D1%8F_%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B0

7. OC MOXHO Ha3BaThb IPOrPaMMHBIM IPOJOJIKEHUEM YCTPOMCTBA YNPAaBIICHUSA
KOMITBIOTEPA.
8. Ilo (according t0) 4ncity OJHOBPEMEHHO BBIMOJIHAEMBIX 3a/1a4 OTCpaIllMOHHbIC

CUCTEMBI MOT'YT OBITh pa3/IeJICHbl Ha JIBA KJlacca:

« MHoro3aaaunble (Unix, OS/2, Windows).
o oaHO3adauHble (Hanpumep, MS-DOS) u

9. Tlo uncmy oAHOBpEMEHHO paboTaroniux mnoJibzoBateneir OC MOXKHO pa3aeuTh
Ha:

« OJIHOMOJB30BaTeNbckue (Hanpumep, MS-DOS, Windows 3.X);
« MHoronojdb3oBareiabckue (Windows NT, Unix).

X. Make up a plan to the text and try to write a short summary of the text, using

one sentence for each item of the plan.

Unit 11.
Cloud Computing

I. Look at the following quotes about cloud computing. Do you agree with them?
Why (not)?

A lot of people are jumping on the [cloud] bandwagon, but | have not heard two
people say the same thing about it. There are multiple definitions out there of “the
cloud.”

Andy Isherwood, quoted in ZDnet News, December 11, 2008

The interesting thing about Cloud Computing is that we've redefined Cloud

Computing to include everything that we already do. . . . I don’t understand what

o1

we would do differently in the light of Cloud Computing other than change the
wording of some of our ads.

Larry Ellison, quoted in the Wall Street Journal, September 26, 2008

I1. Study the text and answer the question "*Why is cloud computing an old
idea?"".

To Cloud Computing: An Old Idea Whose Time Has (Finally) Come

Cloud Computing is a new term for a long held dream of computing as a
utility, which has recently emerged as a commercial reality.

Cloud Computing refers to both the applications delivered as services over the
Internet and the hardware and systems software in the datacenters that provide
those services. The services themselves have long been referred to as Software as a
Service (SaaS), so we use that term. The datacenter hardware and software is what
we will call a Cloud.

When a Cloud is made available in a pay-as-you-go manner to the public, we
call it a Public Cloud; the service being sold is Utility Computing. Current
examples of public Utility Computing include Amazon Web Services, Google
AppEngine, and Microsoft Azure. We use the term Private Cloud to refer to
internal datacenters of a business or other organization that are not made available
to the public. Thus, Cloud Computing is the sum of SaaS and Utility Computing,
but does not normally include Private Clouds. We’ll generally use Cloud
Computing, replacing it with one of the other terms only when clarity demands it.

The advantages of SaaS to both end users and service providers are well
understood. Service providers enjoy greatly simplified software installation and
maintenance and centralized control over versioning; end users can access the
service “anytime, anywhere”, share data and collaborate more easily, and keep
their data stored safely in the infrastructure. Cloud Computing does not change
these arguments, but it does give more application providers the choice of
deploying their product as SaaS without provisioning a datacenter: just as the

emergence of semiconductor foundries gave chip companies the opportunity to

52

design and sell chips without owning a fab, Cloud Computing allows deploying
SaaS—and scaling on demand—without building or provisioning a datacenter.
Analogously to how SaaS allows the user to offload some problems to the SaaS
provider, the SaaS provider can now offload some of his problems to the Cloud
Computing provider.

From a hardware point of view, three aspects are new in Cloud Computing:

1. The illusion of infinite computing resources available on demand, thereby
eliminating the need for Cloud Computing users to plan far ahead for provisioning;

2. The elimination of an up-front commitment by Cloud users, thereby
allowing companies to start small and increase hardware resources only when there
IS an increase in their needs; and

3. The ability to pay for use of computing resources on a short-term basis as
needed (e.g., processors by the hour and storage by the day) and release them as
needed, thereby rewarding conservation by letting machines and storage go when
they are no longer useful.

While the attraction to Cloud Computing users (SaaS providers) is clear, who
would become a Cloud Computing provider, and why? To begin with, realizing the
economies of scale afforded by statistical multiplexing and bulk purchasing
requires the construction of extremely large datacenters.

Building, provisioning, and launching such a facility is a hundred-million-
dollar undertaking. However, because of the phenomenal growth of Web services
through the early 2000’s, many large Internet companies, including Amazon, eBay,
Google, Microsoft and others, were already doing so. Equally important, these
companies also had to develop scalable software infrastructure (such as
MapReduce, the Google File System, BigTable, and Dynamo [16, 20, 14, 17]) and
the operational expertise to armor their datacenters against potential physical and
electronic attacks.

Therefore, a necessary but not sufficient condition for a company to become a

Cloud Computing provider is that it must have existing investments not only in

53

very large datacenters, but also in large-scale software infrastructure and
operational expertise required to run them.

The long dreamed vision of computing as a utility is finally emerging. The
elasticity of a utility matches the need of businesses providing services directly to
customers over the Internet, as workloads can grow (and shrink) far faster than 20
years ago. It used to take years to grow a business to several million customers —
now it can happen in months.

From the cloud provider’s view, the construction of very large datacenters at
low cost sites using commodity computing, storage, and networking uncovered the
possibility of selling those resources on a pay-as-you-go model below the costs of
many medium-sized datacenters, while making a profit by statistically
multiplexing among a large group of customers. From the cloud user’s view, it
would be as startling for a new software startup to build its own datacenter as it
would for a hardware startup to build its own fabrication line. In addition to
startups, many other established organizations take advantage of the elasticity of
Cloud Computing regularly, including newspapers like the Washington Post,
movie companies like Pixar, and many universities.

(Abridged from "Above the clouds: a Berkeley view of cloud computing”
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf)

I11. Look through the text again and give Russian equivalents to the following
words.

Utility, scale (v), Public cloud, Utility computing, semiconductor, application,
Software as a Service (SaaS), on demand, service provider, multiplex,
maintenance, offload, Private cloud, version (v), bulk purchase.

Now make up 3 sentences of your own using these words.

IV. Using external resources (e.g. wordspy.com) find 5-7 terms related to cloud

computing and give their definitions.

54

http://wordspy.com/

V. Make pairs of words with similar meaning.

Commitment, short-term, current, appear, thereby, eliminate, enough, spread out,

limitless, old desire, available, inner, reinforce, require, accessible, actual,

undertaking, expertise, remove, proficiency, sufficient, emerge, by means of that,

demand, up-front, deploy, definite, obligation, infinite, short-run, internal, long-

held dream, reward, project.

VI. Find sentences in the text beginning with the following words and phrases,

translate them into Russian.

To begin with... .

Analogously... .

In addition to

From a hardware point of view

Therefore

Now using these words and phrases make written translation of the sentences

given below.

1.

AHanoru4Ho, 00JIa4HbIe BEPCUH JCTOBBIX M KOMMYHUKAIIMOHHBIX TPUTIOKEHUM
MO3BOJIAT Ja’ke MajbIM KOMIIAHUSIM BOCIIOJIb30BAThCS HHCTPYMEHTaMU, OOJIbLIIe
XapaKTepHBbIMU JI KOPIIOPALIUH.

Takum oOpa3oM, oOJayHblE BBIUYMCICHUS — O3TO KOMOHWHAIMS JIaBHO
CYLIECTBYIOIIMX UJIEH U pelIeHNni, 00ecreurnBarolas UM HOBOE KayeCTBO.

Jns navana co3znaguM YacTHoe 00J1aKO, HACTPOMM CETEBYIO aJIpecalyio U
3allyCTUM BHUPTYaJIbHBIA CcepBEp, KOTOpPbIi OyAeT BBIMOIHATH POJb
MapIIpyTU3aTopa.

C ToukM 3peHus MOCTaBLIMKA, Onarojapsi OOBEIWHEHUIO PECYPCOB U
HEMOCTOSIHHOMY ~ XapakTepy TMOTpeOJeHuss €O CTOpPOHBI MOTpeduTenei,
oOJayHble BBIYMCICHUS TMO3BOJSIOT 3KOHOMUTH Ha MaciuTabax, HCIONb3Ys
MEHBIIIME ammnapaTHbIe Pecypchl, 4YeM TpeOoBalMCh Obl TPH BbHIICICHHBIX

allapaTHbIX MOIMHOCTAX IJIA KaXKI0I'0 HOTpe6I/ITeJ'I$I, a 3a CY€T dBTOMaTU3allnn

95

npoueayp MoAupUKAIMU BBIICICHUS PECYpCOB CYIIECTBEHHO CHUKAIOTCS

3aTpaThl Ha A0OHEHTCKOE OOCITYKHBaHHE.

VII. Focus on grammar. Look at the sentences from the text and translate them
paying attention to the words in bold. Comment on the use and meaning of these
words.
e Computing does not change these arguments, but it does give more
application providers the choice of deploying their product as SaaS
without provisioning a datacenter... .
e ... thereby eliminating the need for Cloud Computing users to plan far
ahead for provisioning. ... workloads can grow (and shrink) far faster

than 20 years ago.

Complete the sentences.

1. — You said you would phone me! — | ... you! But you didnt answer. — OK, I
didnt phone you, but I ... send you a text message.

She ... look good in that dress.

This book is ... more interesting than that one.

| never ... understand what he saw in her.

ok~ w

He is ... taller than his brother.

VIII. Answer the questions about cloud computing basing on the text and your
knowledge.
1. Name the main features of cloud services.
. How many types of deployment models are used in the cloud?
. What is the difference between Private cloud and Public cloud?

2

3

4. What are the advantages of SaaS for end users?

5. What are the advantages of SaaS for service providers?
6

. Explain the essence of SaaS, PaaS and laaS.

56

7. What is the biggest obstacle and opportunity for growth of cloud
computing?

8. What prevented from realization of the idea of cloud computing before?

9. In what way do you use cloud computing?

10.Do you use cloud storage? If yes, which providers do you prefer? Why?

IX. Choose the correct answer.

1. Amazon Web Services is which type of cloud computing distribution model?
A.Software as a Service

B.Platform as a Service

C. Infrastructure as a Service

2. What is private cloud?

A. A standard cloud service offered via the Internet

B. A cloud architecture maintained within an enterprise data center
C.A cloud service inaccessible to anyone but the cultural elite
3. Which of the following isn't an advantage of cloud?

A.No worries about running out of storage

B.Easier to maintain a cloud network

C.Immediate access to computing resources

D.Paying only for what you use

4. Google Docs is a type of cloud computing.

A.True

B.False

5. "Cloud" in cloud computing represents what?

A.Wireless

B.Hard drives

C.People

D.Internet

S7

X. Discuss in groups "'Is cloud computing in Russia on the same level as in other

developed countries?"".

Unit 12.
Grid Ccomputing

I. Before reading the text try to explain what grid computing is.

I1. Read the text and see if your definition of grid computing was right.

Clouds, Grids, and Distributed Systems

Grid computing provides key infrastructure for distributed problem solving in
dynamic virtual organizations. It has been adopted by many scientific projects, and
industrial interest is rising rapidly. However, Grids are still the domain of a few
highly trained programmers with expertise in networking, high-performance
computing, and operating systems. In particular, the number of users lags behind
the initial forecasts laid out by proponents of grid technologies. This
underachievement may have led to claims that the grid concept as a whole is on its
way to being replaced by Cloud computing and various X-as-a-Service approaches.

With cloud computing, companies can scale up to massive capacities in an
instant without having to invest in new infrastructure, train new personnel, or
license new software. Cloud computing is of particular benefit to small and
medium-sized businesses who wish to completely outsource their data-center
infrastructure, or large companies who wish to get peak load capacity without
incurring the higher cost of building larger data centers internally. The consumer
does not own the infrastructure, software, or platform in the cloud. He has lower
upfront costs, capital expenses, and operating expenses. He does not care about

how servers and networks are maintained in the cloud.

58

Cloud computing evolves from grid computing and provides on-demand
resource provisioning. Grid computing may or may not be in the cloud depending
on what type of users are using it.

Grid computing requires the use of software that can divide and farm out
pieces of a program as one large system image to several thousand computers. One
concern about grid is that if one piece of the software on a node fails, other pieces
of the software on other nodes may fail. This is alleviated if that component has a
failover component on another node, but problems can still arise if components
rely on other pieces of software to accomplish one or more grid computing tasks.
Large system images and associated hardware to operate and maintain them can
contribute to large capital and operating expenses.

Similarities and differences

Cloud computing and grid computing are scalable. Scalability is
accomplished through load balancing of application instances running separately
on a variety of operating systems and connected through Web services. CPU and
network bandwidth is allocated and de-allocated on demand. The system's storage
capacity goes up and down depending on the number of users, instances, and the
amount of data transferred at a given time.

Both computing types involve multitenancy and multitask, meaning that
many customers can perform different tasks, accessing a single or multiple
application instances. Sharing resources among a large pool of users assists in
reducing infrastructure costs and peak load capacity. Cloud and grid computing
provide service-level agreements (SLAS) for guaranteed uptime availability of, say,
99 percent. If the service slides below the level of the guaranteed uptime service,
the consumer will get service credit for receiving data late.

The storage computing in the grid is well suited for data-intensive storage,
however it is not economically suited for storing objects as small as 1 byte. In a
data grid, the amounts of distributed data must be large for maximum benefit. A

computational grid focuses on computationally intensive operations.

59

Clouds and Grids share a lot commonality in their vision, architecture and
technology, but they also differ in various aspects such as security, programming
model, business model, compute model, data model, applications, and abstractions.

(Abridged from http://www.ibeehosting.com/blog/what-is-the-difference-between-

cloud-computing-and-grid-computing.html)

I11. Find words in the text that have similar meaning.

Focus; quickly; an addressable point on a network; execute; be unable to keep up;
project; prediction; redundancy within computer network; supporter; cause; upon
request; arrange for work to be done by others; the difference between the highest
and lowest frequencies of a transmission channel; facilitated; amounts paid for
goods and services that may be currently tax deductible; techniques which aim to
spread tasks among the processors; first; ability to adjust configuration and size to
fit new conditions; proficiency; principle in software architecture where a single
instance of the software runs on a server, serving multiple client-organization;

immediately; profit.

IV. Match the beginnings (1-9) to the endings (a-i) to make definitions of the
words in bold.

1) A proponent is

2) To replace

3) When a company outsources

4) Infrastructure is

5) When a company becomes liable for something unpleasant or undesirable,

6) Upfront payment is

7) Uptime is

8) If a company distributes something according to a plan or set apart for a

special purpose,
9) When you evolve,

a) a person who favors a particular idea or proposal.

60

b) means to substitute a person or a thing for.

c) it turns to outside suppliers or manufacturers; contract workers from
outside of a company to perform specific tasks instead of using
company employees.

d) foundation, basis, substructure, underlying features of an operation.

e) itincurs troubles.

f) made in advance, ahead of time.

g) a period when something is functional and available for use.

h) it allocates it.

1) you develop, gradually change or mature over time.

V. Underline the key words in the sentences (in exercise 4) which summarize the

meaning of the prefixes (they are underlined).

Look at the prefixes below and try to explain their meanings.

Pseudo-, anti-, mal-, trans-, per-, de-, bi-, dia-, em-, hemi-, co-/com-/con-, uni-,
ambi-, circum-, fore-, intra-, inter-, un-.

Choose 3-5 prefixes that you would like to remember and make at least five words

with each of them.

VI. Complete the words in the following sentences with an appropriate prefix
from exercise 5.
e In addition, ...municating ...encrypted over the in-band network leaves the
management ...actions open and ...secure.
e Last month computer ..time cost the company over €10000 in lost
production.
e Business clients based on these processors are built for the needs of business
and engineered to protect their data with new levels of ...formance and
...precedented ...bedded security technologies ...bined into a single high-

...formance, secure business tool.

61

e Software applications may not be ...patible with all operating systems.

e Many companies distribute internal documents on their own ...net.

VII. Complete the text with the following words.

Performance, peer-to-peer (2), tools, complementary, multiple, physical (3),
variety, solution, calculation, resources, virtual, clusters (3), single (2),
scheduling, grid.

What is Grid Computing?

The idea behind grid is to make ... machines that may be in different ... locations,
behave like they are one large ... machine. A ... of technologies are used to make
this happen. ... of machines can be used to increase the ... available at one ...
location but to go beyond that requires using ... communications ... and the internet
to allow ... of machines at different ... locations to work together. Grid computing
is precisely that, you have a process that uses ... communication to control
multiple ... of machines at different locations. A compute cluster refers to a
technology that allows a calculation to be done using ... CPUs at a ... site. This is
normally done to improve ... by making more CPUs available for doing a The
clustering technology can be used independently or it can be used as a component
part of a The technologies are ..., a good starting point for someone who wants
to use these technologies is to focus on using the clustering technology first and

then to migrate to a distributed ... at a later point.

VIII. While working in ICT sphere you come across many abbreviations. Check
if you remember some of them from the previous two units.

SLA, SaaS, Paas, laaS, CPU.

Try to guess what these abbreviations stand for.

API, PPP, MIDI, IEEE, VPN, DLL, URL, MMOS, VCL, P2P, OLE, CCU

Using dictionary find ten more IT abbreviations.

IX. Discuss the questions below.

62

1. What will be the best definition of grid computing?

2. Did grid computing evolve from cloud computing?

3. In which situations is grid computing more preferable over cloud
computing? What is the target application for both of them?

4. Provide examples of companies using cloud computing and those using grid
computing.

5. What components are necessary to form a grid?

X. Make a written translation of the text paying special attention to the terms
related to grid computing.

In the simplest of grid systems, the user may select a machine suitable for running
his job and then execute a grid command that sends the job to the selected
machine. More advanced grid systems would include a job scheduler of some kind
that automatically finds the most appropriate machine on which to run any given
job that is waiting to be executed. Schedulers react to current availability of
resources on the grid. The term scheduling is not to be confused with reservation
of resources in advance to improve the quality of service. Sometimes the term
resource broker is used in place of scheduler, but this term implies that some sort
of bartering capability is factored into scheduling. In a scavenging grid system, any
machine that becomes idle would typically report its idle status to the grid
management node. This management node would assign to this idle machine the
next job whose requirements are satisfied by the machine’s resources. Scavenging
is usually implemented in a way that is unobtrusive to the normal machine user. If
the machine becomes busy with local non-grid work, the grid job is usually
suspended or delayed. This situation creates somewhat unpredictable completion
times for grid jobs, although it is not disruptive to those machines donating
resources to the grid. Grid applications that run in scavenging mode often mark
themselves at the operating system’s lowest priority level. In this way, they only

run when no other work is pending. Due to the performance of modern day

63

processors and operating system scheduling algor, the grid application can run for
as short as a few milliseconds, even between a user’s keystrokes.

Taken from 'Introduction to grid computing' (ibm.com/redbooks)

Unit 13.

Open Source vs. Closed Source

I. Before you read answer the questions:
1. What was first to appear: open source or closed source?

2. Do you use more open or closed source software?

I1. Read the text to learn more about Open Source and Closed Source.
Open source vs. closed source

Reviewing literature on open source and closed source security reveals that
the discussion is often determined by biased attitudes toward one of these
development styles.

Over the last few decades we have got used to acquiring software by
procuring licenses for a proprietary, or binary-only, immaterial “object”. We have
come to regard software as a good we have to pay for just as we would pay for
material objects, such as electronic devices, or food. However, in more recent
years, this widely cultivated habit has begun to be accompanied by a new model,
which is characterized by software that comes with a compilable source code (open
source code). Often, such a source code is free of charge and may be modified
and/or redistributed. The software type is referred to by the umbrella term “open
source software”. When discussing this alleged innovation in software distribution,
we are reminded by (Glass, 2004) that, essentially, free and open source software
dates right back to the origins of computing, as far back in fact as the 1950s, when

all software was free, and most of it open. (Schwarz and Takhteyev, 2008) provide

64

detailed insights into the history and the diffusion of open source software. The
application fields of open source software are manifold.

Obviously, its increasing availability and deployment makes it appealing for
hackers and others who are interested in exploiting software vulnerabilities, which
become even more dangerous when software is not applied in a closed context, but
interconnected with other systems and the Internet (this argument is valid for
closed source software as well).

Generally, the availability of source code to the public is a precondition for
software being denoted as “open source software”. Beyond this requirement, the
Open Source Initiative (OSI) has defined a set of criteria that software has to
comply with (OSI, 2006). The definition includes the permission to modify the
code and to redistribute it. However, it does not govern the software development
process in terms of who is eligible to modify the original version. When what is
called “bazaar style” by (Raymond, 2001) is in place, any volunteer can provide
source code submissions. Software development is then often based on informal
communication between the coders (Gonzalez-Barahona, 2000). In a more closed
environment, software is crafted by individual wizards and the development
process is characterized by a relatively strong control of design and
implementation. This style is referred to as “cathedral style” (Raymond, E.S.
(2001) The Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary, O’Reilly, Beijing, China). The implementation of this
modification procedure might have an impact on the security of software, so that a
detailed discussion of open source security would need to take this into account.
A plethora of OSD-compliant licenses have come into operation, such as the
Apache License, BSD license, and GNU General Public License (GPL), which is
maintained by the Free Software Foundation (FSF). The FSF provides a definition
of «“ ,free software™ [as] a matter of liberty, not price.” (FSF, 2007). In contrast to
the OSD definition, the FSF definition explicitly focuses on the option of releasing

improved versions to the public (freedom 3), thereby rejecting the strong

65

supervision of the modification process. Software is usually regarded as being
“closed”, if the source code is not available to the public.

Vulnerabilities. When software is executed in a way different from what the
original software designers intended, this misbehaviour is rooted in software bugs.
(Anderson, 2001) assumes the ratio between bugs and software lines of code
(SLOC) to be about 1:35, i.e. Windows 2000 with its 35 Mio. SLOC would then
have included one million bugs. The portion of bugs that are security critical
(“vulnerabilities”) is assumed to be 1% (Anderson, 2001), resulting in an
amazingly high figure of 350,000 vulnerabilities in Windows 2000. Detected
vulnerabilities can further be divided into those being published and those that
remain unpublished.

Vulnerabilities are (software) product-related weaknesses, for which publicly
accessible databases are available. They are the root for concrete security incidents
(breaches), which are system-related and cause the actual harm. Breaches are much
more difficult to investigate, because data is scarcer.

(Taken from "Security of open source and closed source software: An empirical
comparison of published vulnerabilities", Guido Schryen International Computer

Science Institute, Berkeley)

I11. Find derivatives for the following words from the text.
Vulnerability, exploit, publicly, submission, requirement, appealing, weakness,
coder, development, available, implementation, valid, modification, misbehaviour,

deployment, accessible, procedure, compilable.

IV. Solve the crossword puzzle.
1 2

66

10
11
12
13 14
15
16 17 18
19
20 21 22
23
24
25

Horizontal

1. The act of accomplishing some aim or executing some order; or providing a
practical means for accomplishing something.

4. Owned by a private individual or corporation under a trademark or patent.

7. Means the same as 'entry’, 'giving in', 'filing'.

9. Of or relating to a system of numeration having 2 as its base.

11.A relationship between two quantities, normally expressed as the quotient of
one divided by the other.

12.Something obligatory, a necessity.

13.Collectable, able to be gathered together.

15.A period of ten years.

16.The distribution of forces in preparation for work.

20.Qualified or entitled to be chosen.

23. To come into existence; originate.

67

24. To get by special effort; obtain or acquire.
25. To employ to the greatest possible advantage.

Vertical

2. Something that is necessary to a subsequent result.

3. The act or outcome of grasping the inward or hidden nature of things or of
perceiving in an intuitive manner.

5. A certificate, tag, document, etc., giving official permission to do something.

6. A failure to perform some promised act or obligation.

8. Prejudiced.

10.A skilled or clever person.

14.A defect in the code or routine of a program.

16. Spreading, distribution.

17. A superabundance; an excess.

18. Of many kinds; multiple.

19. Represented as existing or as being as described but not so proved;

supposed.

21. To make with great skill and care.

22. To change in form or character; alter.

V. Close the text and tell whether the following sentences are true, false or there
IS no such information in the text.
1. Closed source is more secure than open source.
2. In "bazaar style” any volunteer can provide source code submissions.
3. Software is usually regarded as being “closed”, if the source code is
available to the public.
4. The portion of breaches of software is assumed to be 1%.

5. Open source means the same as free (without payment).

68

VI. Work in pairs. One of you makes a list of advantages and disadvantages of

open source, while another one works over the same list of closed source. Then

swap the lists. Do you agree with it? Can you add anything?

VII. Answer the questions on the text.

1.

ok W

Which of the open source definitions given in the text do you find the most
accurate?

What is the portion of security critical bugs?

What are the characteristics of "cathedral style"?

Why not all vulnerabilities are published?

Which do you think is more popular in Russia: open or closed source
software? In your opinion, does it reflect preferences in the whole world?
Why (not)?

Will the ratio of open source software to closed source software in the
market change in the nearest future?

As a programmer would you like your product to be open source or closed

source? Explain your choice.

VII1. Comment on the following quotes. Do you agree with them?

« “If you control the code, you control the world. This is the future that awaits us.”

— Marc Goodman.

« "To be able to choose between proprietary software packages is to be able to

choose your master. Freedom means not having a master. And in the area of

computing, freedom means not using proprietary software.” — Richard M.

Stallman.

« “It just makes it even harder for people to even approach the (open source) side,

when they then end up having to worry about ... public humiliation.” — Linus

Torvalds.

IX. Read the information below.

69

Proponents of open source software stress the strength of the resulting review
process and argue in the sense of Raymond, that, “Given enough eyeballs, bugs are
shallow.”, while some opponents follow the argument of Levy, who remarks
“Sure, the source code is available. But is anyone reading it?"

Which side do you take? Discuss it as a group. You might find useful the list of
advantages and disadvantages of open and closed source software that you made in

exercise 6.

X. Sum up all the ideas and write an essay ""Open source software: pros and
cons'. Use appropriate linkers. (First/ firstly ..., secondly ..., thirdly On the
other hand, there are also (some) disadvantages For instance/ for example ...

. In conclusion/ To sum up, I think ...).

Unit 14.

Future Human Computer Interaction

I. Before you read the text work in pairs. Find out what input-output device you
use more often. Compare your answers with other pairs, are you surprised with

the results?

I1. Scan the text and complete it with the words:

video input and output, human computer interaction, gesture and speech
recognition, speech detection, touch screens and multi-touch pads.

Then read the text carefully to know more about future human computer

interaction techniques.

As humans are used to handle things with their hands the technology of
multi-touch displays or touchpad’s brought much more convenience for use in
daily life. Thereby thec..cccce.e.. take an important role as these are the main

communication methods between humans and how they could disrupt the keyboard

70

or mouse as we know it today. Thus it will surely take not much time that
sophisticated techniques will enhance these techniques for human :

Hewett, et al defined that ”Human-computer interaction is a discipline
concerned with the design, evaluation and implementation of interactive
computing systems for human use and with the study of major phenomena
surrounding them.”[1] So since the invention of the Human Computer Interface in
the 1970s at Xerox Park, we are used to have a mouse and a keyboard to interact
with the computer and to have the screen as a simple output device. With
upcoming new technologies these devices are more and more converting with each
other or sophisticated methods are replacing them.

Nowadays the usage ofc.......... seems to be really common and that
this is going to be the future of human computer interaction, but there is for sure
more enhancement which can be seen in many approaches. In the field of multi-
touch products the trend to bigger touch pads in terms of multi-touch screens can
be seen. Therefore the technique of a single-touch touchpad as it is known from
former notebooks is enhanced and more fingers offering natural human hand
gestures can be used. Thus the user can use up to 10 fingers to fully control things
with both hands as with the 10/GUI system which R. Clayton Miller [2] introduced
in 2009. With another upcoming tool even the usage of any surface for such a
touch screen can be used in future, like for the example Displax ™ Multitouch
Technology from Displax ™ Interactive Systems [4]. From these examples it can
be clearly seen that new high potential techniques are pushing into the market and
are going to replace the Apple’s iPad and Microsoft’s Surface.

Great efforts have been made also in the section of devices like
for example SixthSense that Pranav Mistry, et al. [5] invented in 2009. In their
approach they are using a wearable gesture interface, where they are taking the
HCI to the next level where communication is done with hands without any
handheld tools; while researchers at Carnegie Mellon University and Microsoft
have developed another highly topical approach by using the humans arm as an

input surface, called Skinput. As SixthSense and Skinput are mainly designed for

71

mobil usage, Oblong Industries invented with g-speak a full gesture input/output
device with a more sophisticated 3D user interface,which is designed for a usage
with big screens that are using a lot more space.

.................... Is always mentioned as the most common straight-forwarded
way, after the gestural motion, of how people interact between each other. The
major thing with speech detection is to create a good algorithm not only to select
the noise from the actual voice but rather detecting what humans are actually
saying. First main algorithm is based on improving spoken natural language, the
second one is connected with Microsoft Speech Technologies like the Speech
Application Programming Interface SAPI. With this API1 Microsoft provides on the
one hand a converter for full human spoken audio input to readable text. On the
other hand it can be also used to convert written text into human speech with a
synthetic voice generator.

There are a lot approaches of new future methods and also
devices or prototypes in which these techniques are already in use. We are tending
towards to disrupt the usage of the mouse and the keyboard as we are used to use
them as a computer input device for the last 3 decades. Many new methods are
going into the sector of using human hand gestures and even multi-modal methods
to interact with the computer. With the tools described we have seen that with the
released iPad and Microsoft’s Surface some of these methods are already included.
For sure there are more sophisticated methods which will push into the market
soon.

(From “Future Human Computer Interaction with special focus on input and

output techniques” by Thomas Hahn)

I11. Put words in the correct order and you will get some additional information
about the devices mentioned in the text. The first word is underlined.

the tied projected any In a certain against the output which place is you directly
surface with a like devices which simple is clearly to SixthSense advantage other

small main are to projector.

72

very the beside scratches With damage is durable fact weight of a on just 300g
surface from placed transportable protect Displax TM is tool that it well as the film
iIs the also back of the Multitouch the to it and the other.

this as tracking in both a 10/GUI human can interact with the with a maybe With

and hands use it and computer also beings as opportunity keyboard system device.

IV. Find derivatives of the following words in the text and explain their
meaning.
Nouns: convenient, enhance, evaluate, implement, detect.

Adjective: sophisticate, wear, read, concern, compute.

What noun suffixes are used in the words? Can you think of other words with these
suffixes?
What adjective suffixes are used in the words? Can you think of other words with

these suffixes?

V. Make up combinations using words form A and B.

A: User, signal, natural, interact, upcoming, major, the convenience of, algorithm,
provide, handheld, handle, improve, sophisticated, software, disrupt.

B: Device, an installment plan, enhancement, access, change, deliveries, with
audience, method, phenomenon, advantage, pronunciation, validation, interface,

detection, the case.

VI. Open the brackets and comment on the use of the verb "use" in the
sentences.

1) As humans (use) to handle things with their hands ...

2) With another upcoming tool even the usage of any surface for such a touch
screen can (use)in future, ...

3) On the other hand it can also (use) to convert written text ...

4) ... as we (use) (use) them as a computer input device for the last 3 decades.

73

VII. While working with scientific literature pay attention to the layout. Try to
answer the questions below without referring to the text.

e How does the author refer to the work of other scientists?

e What does et al. mean?

e What is the singular form of the word "phenomena”?

You can often see the following Latin abbreviations in the articles. Do you
remember what they mean?

NB, etc., e.g., i.e., per cent, vs., viz., A.D., am, pm, ibid.

Give plural form of the following nouns of Latin and Greek origin. Use the
dictionary if necessary.

Medium, abacus, analysis, phenomenon, axis, thesis, nucleus, criterion, matrix.

VII1. Answer the following questions on the text.

1. What input and output devices are mentioned in the text?

2. Using additional information compare new input and output techniques, outline
advantages and disadvantages of each of them.

3. Most people use mouse as their pointing device. Discuss the reasons why
someone might prefer to use one of the other pointing devices.

4. Do you think that voice input is practical for your own use?

5. Inyour opinion, what is the future of input and output techniques?

6. To answer these questions use your own knowledge from reading or experience
or imagine the possibilities. What kind of input device might be convenient for
this type of jobs or situations?

a) A restaurant in which customers place their own orders from the table.
b) A psychologist who wants o give a new client a standard test.
c) A retailer who wants to move customers quickly through the checkout lines.

d) A small business owner who wants to keep track of employee work hours.

74

IX. Translate the text to English (or give its main idea).

bropo mo marentam u ToBapubiM 3Hakam CIIIA Beigamo Apple mateHt
8,228,305 mnonm w©Ha3zBanuem "MeTonbl BBojJa HMHGOOpPMAlNMM YEIOBEKOM B
BBIUHCIIUTENIFHOE YCTPOMCTBO", B KOTOPOM OINHCAaHO MHOXECTBO CIOCOOOB
B3aUMOJICUCTBUSL C DJIEKTPOHHBIM YCTPOWCTBOM, JICKAIIMMHU 3a TpeleaaMu
BO3MOXXHOCTEH 00bIuHOM nepudepuu, coodmaer Patently Apple.

Tak, HampuMep, B NAaTEHTE MpeAjaraeTcsi HCIOJIb30BaTh MNPAKTHUYECKU
T00yI0 MOBEPXHOCTH JIJIs1 BBOAA JAHHBIX C MOMOIIBIO MpUKOCHOBeHUH. [Ipu a3TOM
(UKCUPOBATHCS MOXKET HE TOJIBKO TOJOKCHHWE TMalbleB, HO W BEIWYMHA UX
JIaBJICHUS Ha MOBEPXHOCTh. TaKyro MOBEPXHOCTh, HAPUMEP, MOKHO MPEBPATUTH B
XOJICT, U PUCOBATh HA HEH; TOJIIMHA JIMHUMA OyIET 3aBCETh OT CUJIbI HAXKATHUS.

B mnarente Takke YNOMHHAIOTCS TIEpUYATKUA [JIsi B3aUMOJECHUCTBHUSL C
00BEKTaMH B BHUPTYaJIbHOM IPOCTPAHCTBE, KOTOPOE CIIOCOOHA CHUMYJIUPOBAThH
BBIYHCIIUTENIbHAS CUCTEMA.

JIst cuuThIBaHUS JAaHHBIX B BUPTYaJbHOM MPOCTpaHCTBE Apple mpeayiaraer
UCIIOJB30BaTh TeXHOJorHo "S5SD". JlaHHas TEXHOJOTHS MOJPa3yMEBAET, 4TO
BBIYUCIIUTEIbHAS CUCTeMa OyIeT HE TOJbKO (DUKCUPOBATH MOJIOKEHUE, HAITPUMED,
JaJ0OHEN YeJIOBEKa [0 TPEM OCSIM, HO U HAIIPABIICHHE UX MEPEMEIICHUS U CKOPOCTh
(To ecth Bcero 5 mapameTpoB). Bece 310 OyaeT onpenenarh CTENeHb BO3ICHCTBUS
Ha BUPTYaJIbHBIN MIpEAMET.

B naTtenTe Takke onuchIBaeTCsA cUCTEMa, KOTopasi Obl TTO3BOJISUIA YIIPABIISATh
UTPOBBIM TMEPCOHAXKEM C TOMOINBIO TMEPEMEIIECHUs TOIb30BaTeNsl U YacTel ero
TeJa B NPOCTPAHCTBE (HAIIOMUHAET PEAJTU30BAHHBIA KOMMEPUECKUH MPOAYKT
Microsoft Kinect myst urpoBoit mpucraBku Xbox 360).

CornacHo OMUCAaHUIO, B KAYECTBE BXOAHBIX B BBIYUCIHUTEIBHYIO CUCTEMY
JJAHHBIX MOTYT BBICTYIAaTh: U3MEHEHUE DJIEKTPOMArHUTHOTO MOJIsA, NEPEMEICHNE
MOTOKOB BO3/yXa B MOMEIICHUU U JaXK€ U3MEHEHUE TEMIIEPATYPHI.

Kak yrounsier Patently Apple, aBTopoM JaHHOTO JIOKYMEHTa SIBJISIETCS HE
cama Apple - xommanus mpuoOpena HapaOOTKH Yy KaHAJCKOro H300peTaTess

Tumotu Ilpaiiopa (Timothy Pryor). 3asBku Ha mojgydyeHue CBA3aHHBIX NATEHTOB

75

natupytorcst 1999-2006 r. B utone 2009 r. Apple nomana 3asBKy Ha PETHCTPAIUIO
MaTEeHTa B €r0 OKOHYATEILHOM BHUJIE.

B Apple npeamnonaratot, 94To B OyayiieM mogo0HbIe METOABI BBOJA TAaHHBIX
MOTYT 3aMCHHUTH TPATUIIMOHHBIC KJIIABHATYPY, MBIIIh U JaKE€ CCHCOPHBIC SKPAHHI.
OTMeTuM, 4YTO HEKUW TMOAOOHBIM B3MNIAN Ha Oyaymee WHOOPMAIMOHHBIX

TEeXHOJIOTHI paznensieT ocHoBarenb Microsoft bum [eitre (Bill Gates).

X. Using additional resources make presentations about recent human computer

interaction techniques.

Unit 15.
Robots

I. Read the following text. Do you agree that "‘nowadays robots are in the
infancy stage of their evolution™?

Why build robots? Robots are indispensable in many manufacturing industries.
The reason is that the cost per hour to operate a robot is a fraction of the cost of the
human labor needed to perform the same function. However nowadays robots are
in the infancy stage of their evolution. As robots evolve, they will become more
versatile, emulating the human capacity and ability to switch job tasks easily, since
robots require a combination of elements to be effective: sophistication of

intelligence, movement, mobility, navigation, and purpose.

I1. Study the information about robots in the text.

Industrial robots. Robots are indispensable in many manufacturing
industries. For instance, robot welders are commonly used in automobile
manufacturing. Other robots are equipped with spray painters and paint
components. The semiconductor industry uses robots to solder (spot weld)
microwires to semiconductor chips. Other robots (called “pick and place”) insert

integrated circuits (ICs) onto printed circuit boards, a process known as “stuffing

76

the board.” These particular robots perform the same repetitive and precise
movements day in and day out. Robots improve the quality and profit margin
(competitiveness) of manufacturing companies.

Design and prototyping. Some robots are useful for more than repetitive
work. Manufacturing companies commonly use computer-aided design (CAD),
computer-aided manufacturing (CAM), and computer numerical control (CNC)
machines to produce designs, manufacture components, and assemble machines.
These technologies allow an engineer to design a component using CAD and
quickly manufacture the design of the board using computer-controlled equipment.

Hazardous duty. Without risking human life or limb, robots can replace
humans in some hazardous duty service. Take for example bomb disposal.
Typically these robots resemble small armored tanks and are guided remotely by
personnel using video cameras (basic telepresence system) attached to the front of
the robot. Robotic arms can grab a suspected bomb and place it in an explosion-
proof safe box for detonation and/or disposal. Similar robots can help clean up
toxic waste. Robots can work in all types of polluted environments, chemical as
well as nuclear.

Maintenance robots specially designed to travel through pipes, sewers, air
conditioning ducts, and other systems can assist in assessment and repair. A video
camera mounted on the robot can transmit video pictures back to an inspecting
technician. Where there is damage, the technician can use the robot to facilitate
small repairs quickly and efficiently. Fire-fighting robots better than a home fire
extinguisher, how about a home fire-fighting robot? This robot will detect a fire
anywhere in the house, travel to the location, and put out the fire.

Medical robots fall into three general categories: diagnostic testing (e.g.
Papnet, a neural network tool that helps cytologists detect cervical cancer quickly
and more accurately), telepresence surgery (here a surgeon is able to operate on a
patient remotely using a specially developed medical robot), enhanced
manipulation (the surgeon performs delicate and microscopic surgical procedures

on a patient through a robot).

77

Nanotechnology is the control and manipulation of matter at the atomic and
molecular level. Tiny (nano) components can be assembled to make machines and
equipment the size of bacteria. IBM has already created transistors, wires, gears,
and levers out of atoms. Nanotechnology can also be used to create small and
microscopic robots. Imagine robots so small they can be injected into a patient’s
bloodstream. The robots travel to the heart and begin removing the fatty deposits,
restoring circulation. Or the robots travel to a tumor where they selectively destroy
all cancerous cells.

War robots are becoming increasingly more important in modern warfare.
Drone aircraft can track enemy movements and keep the enemy under surveillance.
The Israeli military used an unmanned drone in an interesting way. The drone was
created to be a large radar target. It was flown into enemy airspace. The enemy
switched on its targeting radar, allowing the Israelis to get a fix on the radar
position. The radar installation was destroyed, making it safe for fighter jets to
follow through. Smart bombs and cruise missiles are other examples of “smart”
weaponry. As much as I appreciate Asimov’s Three Laws of Robotics, which
principally state that a robot should never intentionally harm a human being, war
bots are here to stay.

(Abridged from “Robots, androids and animatrons” by John Lovine)

I11. Give Russian equivalents to the words and word combinations below and
explain their meaning in your own words.

Indispensable, enhanced, disposal, deposit, limb, margin, surveillance, hazardous,
facilitate, remotely, wire, assessment, capacity, precise, resemble, missile,
accurate, versatile, day in and day out, appreciate, grab, target, detect, switch, put
out, emulate, solder, installation, lever, surgery.

Choose 3-5 words that you find hard to memorize and use them in sentences of

your own.

1V. Match words with their definitions.

78

Robot

Evolution

Circuit

Semiconductor

Sophistication

Enhance

Precise

Accurate

characterized by perfect conformity to fact

or truth ; strictly correct

uplifting enlightenment; being expert or
having knowledge of some technical

subject

a mechanical device for performing a task
which might otherwise be done by a

human

conforming exactly or almost exactly to

fact or to a standard or performing
make better or more attractive

a complete path through which an electric

current can flow

a material, typically crystaline, which
allows current to flow under certain

circumstances.

a process in which something passes by

degrees to a different stage

V. Fill in the gaps using the words from the previous exercises.

1. The law in this point is not(Bacon)

. Her beauty was the result of a good night’s sleep rather than makeup.

. Playing a guitar is ... different from playing the drums.

2
3
4. Highly pure telluriumis used in
5

. Technological ... spelled superiority in the military sphere.

7.
8.
Q.

Transported and enamel ... belong to brand new production not in Russian,
but also in foreign market.

And if you cannot think yourself, let your ... do the thinking.

Mary ... her mother in looks.

It has been raining all day! How can we go out when it rains ... ?

10.Skydiving is a ... sport.

VI. Decide if the following sentences are true or false. Explain your choice.

o~ WD

The performance of tasks by robots is based on preprogrammed algorithms.
Today’s most advanced industrial robots will soon become “dinosaurs".
Medical robots are used for diagnostic testing and enhanced manipulating.
Robots in industry are used only for repetitive work.

Most robots are made and used in Japan.

VII. Discuss the questions below in the class.

o~ WD E

Is there a difference between a machine, like a microwave, and a robot?
Where did the word ‘robot’ come from?

How did first robot appear?

Do you know Isaac Asimov? What did he do?

In what sphere (from the ones mentioned in the text) do you think the usage
of robots is of special importance?

Can you think of any sphere (e.g. nanotechnology) that could exist
nowadyas without robots?

Have you seen usage robots in industry/ design/ maintenance/ medical
spheres? What were your impressions? Were you satisfied with their work?
Can a robot completely replace a human in some work?

Do you think robots will cause unemployment in the future or make more

work?

10.1s there a strong robotics industry in your country?

80

VIII. Look at the suffixes below, find words with them in the text and divide the
suffixes in the box into those which usually indicate a noun form and those
which are used in adjective forms. There is one that you don't need.

-ence/-ance, -ed, -able, -ity, -ate, -ics, -on, -or/-er, -ness, -ment, -ar, -ic, -fare, -al,
-proof, -ry/-y, -ly, -ing, -able, -ous, -ion, -ive.

Explain why you did not need one suffix.

Make 2-3 words using each suffix.

IX. Find information about recent usage of robots in manufacturing industry.

Discuss new technologies and techniques of their usage in the class.

X. Make a plan of the text, find key words in each part and make a summary of
the text ""Robots' adding extra information that you discussed in the exercises

above.

Unit 16.

Artificial intelligence and robots

|. Before you read answer the questions in pairs.
1. Spend one minute writing down all of the different words you associate
with the word “robot”. Share your words with your partner(s) and talk about
them. Together, put the words into different categories.

2. What is your favourite movie that feature robots?

I1. Read the text to know more about Al.

Artificial intelligence and robots
What is artificial intelligence? This is a legitimate question. We most
certainly will develop neural networks that are intelligent before we develop nets

that become conscious. So in attempting to create neural networks that are

81

intelligent or demonstrate intelligence, what criteria should one use to determine if
this goal has been achieved? Alan Turing, a British mathematician, devised an
interesting procedural test that is generally accepted as a valid way to determine if
a machine has intelligence. The test is conducted as follows: A person and the
machine hold a conversation by typing messages to one another via a teletype. If
the machine can carry on a conversation without the person being able to
determine whether a machine or person exists at the other teletype, the machine
can be classified as intelligent. This is called the Turing test and is one criteria used
to determine Al. Although the Turing test is well accepted, it isn’t a definitive test
for Al. There are a number of “completely dumb” language processing programs
that come close to passing the Turing test. The most famous program is named
ELIZA, developed by Joseph Weizenbaum at the Massachusetts Institute of
Technology (MIT). ELIZA simulates a psychologist, and you are able to conduct a
conversation with ELIZA. For instance, if you typed to ELIZA that you missed
your father, ELIZA might respond with “Why do you miss your father?” or “Tell
me more about your father.” These responses may lead you to believe that ELIZA
understands what you have said. It doesn’t. The responses are clever programming
tricks constructed from your statements. Therefore, if we like, we could do away
with the Turing test and consider a different criterion. Perhaps consciousness or
selfawareness would be a better signpost of intelligence. A self-aware machine
would certainly know that it is intelligent. Another criterion, more simple and
direct is the ability to learn from experience. Of course, we could abandon logical
approximations entirely and state that intelligence is achieved in systems that
develop a sense of humor. As far as | know humans are the only animals that
laugh. Perhaps humor and emotion will end up being the truest test of all.

As for intelligence packed in a robot, it takes one or two forms: rule-based
(expert) or neural. It’s possible for both forms of intelligence to work in tandem.
This synthesis of intelligence will be commonly used in robotics to create a robust
intelligence system. Expert (rule-based) intelligence programs are familiar to most

people; these are programs written in high-level or low-level languages like C ,

82

BASIC, and assembly. Neural systems on the other hand do not have a central
processing unit (CPU), rather they function on a neural stimulus-response
mechanism. The robotic stimulus-response mechanism goes by a number of
names, including neural network, behavioral-based robotics, subsumption
architecture, and nervous network. William Grey Walter pioneered behavioral-
based robotics in the late 1940s. Independent of Walter’s work, neural-based
robotic response was academically explored and developed in the 1980s by
Valentino Braitenberg in his book Vehicles: Experiments in Synthetic Psychology.
Rodney Brooks at the Massachusetts Institute of Technology (MIT), inspired by
work accomplished by Walter, developed his own derivative of stimulus responses
he calls “subsumption architecture.” Mark Tilden, inspired by work done by
Rodney Brooks, founded BEAM robotics, which uses “nervous nets.” Behavioral-
based robotics is a hot topic and one that will continue to get hotter in the future. In
these architectural schemes the stimulus-response mechanisms can be layered on
top of one another. A multilayer stimulus-response mechanism can exhibit what
appears as strikingly intelligent behavior. One approach is called “topdown
intelligence” and the other is called “bottom-up intelligence. The top-down
approach attempts to create an expert system or program to perform a controlled
search and discover. The bottom-up approach creates “artificial” behavior in the
robot and then causes it to explore and discover. At first glance you may not see
much of a difference in either approach, but there is one and it’s quite significant.
If the expert system approaches a situation (or terrain) it hasn’t been programmed
to handle, it will falter. The behavior system on the other hand isn’t looking for
any template “programmed” situation to calculate procedures and couldn’t care
less about the situation; it just goes on exploring. Robotists have found over the
last 30 years of experimentation that bottom-up programming (behavioral-based) is
successful many times where top-down programming fails.

(Abridged from “Robots, androids and animatrons” by John Lovine)

83

I11. Match the following phrases from the article.

neural system
legitimate in tandem
self-aware mechanism
bottom-up behavioral-based
subsumption guestion

to work a conversation
stimulus-response network

robotics approach

robust architecture

to conduct machine

IV. Spell the jumbled words (from the text) correctly.
Another irenitco (n.)
a vitidifene test (adj.)

perhaps ssssccoounnie (n.)... would be ...

fescusclus (adj.) many times

gkitylsrin (adv.) intelligent behaviour

V. Design project.

Your teacher is a rich investor. He/she has sponsored a robotics design
competition. The team who comes up the best idea for a new robot will be
awarded 10 million dollars to have their product developed. You and your
parner have entered the contest. You have five minutes to think of a new

robotics product. When fininshed, try to sell your idea to your teacher.

V1. Role play

(note: each student reads his/her role only)

84

Student You believe that space exploration is the key to the survival of the
A: human race. Take a minute to think of other reasons why space
exploration is important. When ready, ask your partner what she/he

thinks of the new mission to Mars.

Student Governments worldwide spend billions of dollars on space
B: exploration. You believe it’s a waste of time and money. The Earth
has many problems. We need to fix our own problems instead of
flying off into space. Think of other reasons to support your

argument. Your partner will start the conversation.

VII. Discuss the questions below in the class.

1. Do you feel comfortable with the idea of Al (that robots can think)?

2. Do you think we create a new problem with each invention? Think of
examples.

3. Is there anything that does not yet exist that you would like to see
invented? What is it?

4. Imagine the job you wish to hold when you get older — could a robot
be programmed to do that job as well as you?

5. A film like The Matrix has explored the idea that we might be living
in virtual reality. But what evidence is there for or against this hypothesis? And
what are its implications?

6. What name would you give to your robot?

7. Do you agree that robots will always be too expensive for most

people?

VIII. Magazine article: Write a magazine article about robots. Include an
imaginary interview with a robot. Read what you wrote to your classmates in

the next lesson. Give each other feedback on your articles.

85

IX. In pairs / groups, write down questions about robots and their roles in our

future.

« Ask other classmates your questions and note down their answers.
« Go back to your original partner / group and compare your findings.

« Make mini-presentations to other groups on your findings.

X. Translate the text below to English.

XOpouKM MPUMEPOM HCKYCCTBEHHBIX areHTOB CIY’KAT MHTEJUIEKTYyaJIbHbIE
poOoThl. B mepByro ouepenb, mom100HBIE pOOOTH UMEIOT IMHUPOKUNA aCCOPTUMEHT
HMCKYCCTBEHHBIX OpPraHOB 4YYBCTB (CEHCOpPHBIE JaTYMKH) U HCKYCCTBEHHBIX
abdexTopoB (MaHuMyasTOpbl). WX MOOWMIBHOCTH JocTHraercs Onaromaps
KOJIECHBIM, TYCEHMYHBIM, IIararolldM U TMPOYUM CHUCTEMaM MEepPEeMEIICHUSI.
AKTUBHOCTh ¥ aBTOHOMHOCTb POOOTOB TECHO CBSI3aHBI C HAJIMYHUEM CPEICTB
LeJIeNoIaraius 1 IJIAaHUPOBAHUS JEHUCTBHM, CUCTEM MOJINEPKKU PELICHUS 3a/1ay, a
WHTEJJIEKTYyallu3aus, TOMUMO oOOJialaHusl CUCTEMOM OOpaOOTKM 3HAHUM,
MPEANOJIAraeT pa3BUTHIE CPEACTBA KOMMYHHUKAIIMU PA3JIUYHBIX YPOBHEH, BILIOTh
JI0 CPEICTB €CTECTBEHHO-S3bIKOBOIO OOILIEHHUS.

HabGop ceHcOpHBIX JaTYMKOB BHENIHEW W BHYTPEHHEW uHPOpMAIUU
BKJIFOYAET: 3pUTEIbHBIE M 3BYKOBBIE (YJIBTPAa3BYKOBBIE), TaKTUJIbHBIE U
KUHECTeTUUeckue aaTuuku. Kpome Toro, 4acto NPUMEHSIOTCA JaTYUKHU s
WU3MEPEHUS TEMIEPATYPHhI, 1aBICHUS, BIAXXHOCTH, PAAUOAKTUBHOCTH, MAarHUTHOTO
MOJIs U APYTUX (PU3UYECKUX BEJIIMUUH.

[Ipu 3puTenbHOM OYYBCTBJICHUHM POOOTOB HCTOYHUKAMU HHGPOpMAIUU
CIy’KaT Telie- W BHJCOKAMEPHI, ONTHYECKHEe W Tojorpaduyeckue gaTuuku. K
3BYKOBBIM JaTYMKAM OTHOCATCS MHUKPO(OHBI, SXOJIOKAIMOHHBIE NAaTUYUKUA U TIp.
[Ipu B3auMozeiiCTBUM pOOOTAa C BHEIIHEHW CPEeNod KIIOYEBYIO POJIb WIPArOT
TaKTUJIbHBIE JATYUKH, O3BOJISIONINE PEArupOBaTh HA MPUKOCHOBEHHUE U U3MEPSAThH
JIaBJICHME B MECTaX KOHTaKTa C OOBEKTOM Cpeibl. DTU JATUUKU CIIyXKaT s

oOHapy>KEeHUsI pa3IMIHbIX 00BEKTOB, PACIIO3HABAHUS BHEITHEH 00CTAaHOBKH MTyTEM

86

OLIYTILIBAHUS MPEAMETOB, & B KOHEUHOM CYETe, /JJISl MOTy4YeHHs] OOpaTHBIX CBA3EH
10 YCWIMSIM.

HeorbeMiembiM aTpuOyTOM UHTEIIEKTYaJIbHBIX POOOTOB SIBISETCS HATUYHE
CIEHUAIBHON MOJICHCTEMBI TUIAHUPOBAHUSA, COCTABIISIONIEH NPOrpaMMy JEHCTBUI
po0oTa B peajbHBIX YCIOBUSAX OKPYXKAIOUIEH Cpenbl, KOTOpBIE OINpPEAEIsIOTCs
peuenTtopamu pob6ota. s miuaHUpOBaHUS JEATEIBHOCTH POOOT JOJHKEH HMETh
3HaHUS O CBOMCTBAX OKPYKAIOLIEH CPENbl M IyTAX JOCTMIKECHHS LEJIEH B OTOU

cpene.

Unit 17.

Computational linguistics.

I. Comment on the following statements:

Friendly software should listen and speak.
Machines can also help people communicate with each other.

Language is the fabric of the web.

I1. Before you read the text say what computational linguistics deals with. Read

the text to check your answers.

Computational linguistics (CL) is a discipline between linguistics and
computer science which is concerned with the computational aspects of the human
language faculty. It belongs to the cognitive sciences and overlaps with the field of
artificial intelligence (Al), a branch of computer science aiming at computational
models of human cognition. Computational linguistics has applied and theoretical
components. Human language is the most exciting and demanding puzzle.
Theoretical CL takes up issues in theoretical linguistics and cognitive science. It
deals with formal theories about the linguistic knowledge that a human needs for
generating and understanding language. Today these theories have reached a

degree of complexity that can only be managed by employing computers.

87

Computational linguists develop formal models simulating aspects of the human
language faculty and implement them as computer programs. These programs
constitute the basis for the evaluation and further development of the theories. In
addition to linguistic theories, findings from cognitive psychology play a major
role in simulating linguistic competence. Within psychology, it is mainly the area
of psycholinguistics that examines the cognitive processes constituting human
language use. The relevance of computational modeling for psycholinguistic
research is reflected in the emergence of a new subdiscipline: computational
psycholinguistics. We teach computers to communicate with people.

Applied CL focuses on the practical outcome of modelling human language
use. The methods, techniques, tools and applications in this area are often
subsumed under the term language engineering or (human) language technology.
Although existing CL systems are far from achieving human ability, they have
numerous possible applications. The goal is to create software products that have
some knowledge of human language. Such products are going to change our lives.
They are urgently needed for improving human-machine interaction since the main
obstacle in the interaction between human and computer is a communication
problem. Today's computers do not understand our language but computer
languages are difficult to learn and do not correspond to the structure of human
thought. Even if the language the machine understands and its domain of discourse
are very restricted, the use of human language can increase the acceptance of
software and the productivity of its users.

Natural language interfaces enable the user to communicate with the
computer in French, English, German, or another human language. Some
applications of such interfaces are database queries, information retrieval from
texts, so-called expert systems, and robot control. Current advances in the
recognition of spoken language improve the usability of many types of natural
language systems. Communication with computers using spoken language will
have a lasting impact upon the work environment; completely new areas of

application for information technology will open up. However, spoken language

88

needs to be combined with other modes of communication such as pointing with
mouse or finger. If such multimodal communication is finally embedded in an
effective general model of cooperation, we have succeeded in turning the machine
into a partner.

Much older than communication problems between human beings and
machines are those between people with different mother tongues. One of the
original aims of applied computational linguistics has always been fully automatic
translation between human languages. From bitter experience scientists have
realized that they are still far away from achieving the ambitious goal of translating
unrestricted texts. Nevertheless computational linguists have created software
systems that simplify the work of human translators and clearly improve their
productivity. Less than perfect automatic translations can also be of great help to
information seekers who have to search through large amounts of texts in foreign
languages.

The rapid growth of the Internet/ WWW and the emergence of the
information society pose exciting new challenges to language technology.
Although the new media combine text, graphics, sound and movies, the whole
world of multimedia information can only be structured, indexed and navigated
through language. For browsing, navigating, filtering and processing the
information on the web, we need software that can get at the contents of
documents. Language technology for content management is a necessary
precondition for turning the wealth of digital information into collective
knowledge. The increasing multilinguality of the web constitutes an additional
challenge for our discipline. The global web can only be mastered with the help of
multilingual tools for indexing and navigating. Systems for crosslingual
information and knowledge management will surmount language barriers for e-
commerce, education and international cooperation.

We still do not know very well how people produce and comprehend
language. Yet our understanding of the intricate mechanisms, that underlay human

language processing, keeps growing. Modelling such mechanisms on a computer

89

also helps us to discover and formally describe hidden properties of human
language that are relevant for any kind of language processing including many
useful software applications. Our long term goal is the deep understanding of
human language and powerful intelligent linguistic applications. However, even
today's language technologies full of clever short cuts and shallow processing
techniques can be turned into badly needed software products.

For many students and practitioners of computational linguistics the special
attraction of the discipline is the combination of expertise from the humanities,
natural and behavioral sciences, and engineering. Scientific approaches and
practical techniques come from linguistics, computer science, psychology, and
mathematics. At some universities the subject is taught in computer science at
others it belongs to linguistics or cognitive science. In addition there is a small but
growing number of programs and departments dedicated solely to computational
linguistics.

(http://hanz.uzkoreit.net)

I11. Answer the following questions.

1. What does theoretical CL deal with?

2. What does applied CL focus on?

3. What do natural language interfaces help to do?

4. How can CL simplify communication between people?

5. Why is language technology for content management a necessary precondition?
6. What is the special attraction of CL?

IV. Match the words in A with their synonyms in B.

A. cognition, embedded, emergence, to enable, interaction, obstacle, to overlap,

precondition, recognition, to surmount

90

B. acknowledgment, to allow, appearance, awareness, communication, to cover a
part of, impediment, inserted, to overcome, prerequisite
V. Match the words in two columns so that they should form word-combinations

from the text.

Achieve Being
Badly Cuts

Collective Complexity

Degree of The goal

Human Growing

Human-machine | Outcome

Keep Needed
Practical Interaction
Short Needed

Urgently knowledge

VI. Match the first half of each sentence with the most appropriate second half.

Computational linguistics as a field

predates artificial intelligence,

A. | that would allow them the same
remarkable capacity to process

language.

Computational linguistics originated
with efforts in the United States in
the 1950s

B. | dealing with human-level
comprehension and production of

natural languages.

Computers had proven their ability

C. | into existence in the 1960s.

It was thought to be only a short
matter of time before the technical

details could be taken care of

D. | devoted to developing algorithms

and software for intelligently

processing language data.

91

Computational linguistics was born

as the name of the new field of study

to have computers automatically
translate texts in foreign languages

into English.

Artificial intelligence came

a field under which it is often

grouped.

the field of computational linguistics

became that sub-division of artificial

intelligence

ability to do complex mathematics
much faster and more accurately

than humans.

VII. Find 3-4 key words in every paragraph. Write down the sentences of your

own using these words. They should give the main idea of each paragraph.

VIII. Make a summary of the text using words and phrases from Appendix 2.

Appendix 1

Mathematical and scientific symbols

Common pronunciations of mathematical and scientific symbols are given in the

list below.

Symbols

+ Plus

- Minus

+ plus or minus

X multiplied by

/ over; divided by
+ divided

= equals

92

/'plas/

/'marnos/

/'plas o: 'mainas/
/'maltiplaid bar/
/'auve/ /di'vaidad/
/dr'vardad/
/'t:kwalz/

u

ALMIINIVI ALV S

— Al v

*%

>

s | 2w |2

;‘(x) [
f'(X)

approximately, similar
equivalent to; identical
not equal to

greater than

less than

greater than or equal to
less than or equal to
not greater than

not less than

much greater than
much less than
perpendicular to
parallel to

not equivalent to, not identical to

not similar to

squared

cubed

to the fourth; to the power four

to the n; to the nth; to the power
n

root; square root
cube root

fourth root
factorial

percent

infinity

varies as; proportional to
dot

double dot

Is to, ratio of

f; function

f dash; derivative

93

/o'prokstmatl/ /'stmila to/
/ik'wivalont to/ /ar'dentikl to/
/'not '1:kwal to/

/'grerto don/

/'les dan/

/'grerto don or 'i:kwal to/
I'les don or' i:kwal to/
/'not 'grerto don/

/'not 'les don/

/'may 'grerto don/

/'may 'les don/
/p3:pan'dikjuls tov/
/'paralel to/

/"ot 1k'wivalant to/ /ot ar'dentikl
to/

/'not 'stmils to/

/'skwead/

I'kju:bd/

/to 09 't0:0/ /te 09 'pavs fo:/

/ta 81 en; to d1 en0; to do paver en/

/ru:t/ /skwea ru:t/
/Kju:b ru:t/

/£5:0 ru:t/
/fek'to:rial/
/pa'sent/
/m'finati/
/'veariz/ /pra'po:fanal/
/dot/

/dabl dot/
/re1f1ov/

/ef/ /'fagkfon/
/de&f/ /di'rivatv/

f'x
f'(x)

£4)

COS X
sin x
tan x
COSecC X
sinh x
cosh x
tanh x
|

C

F

°K

f double-dash; second derivative

f triple-dash; f treble-dash; third
derivative

f four; fourth derivative
partial derivative, delta
integral

sum

with respect to

log

log to the base 2 of x
therefore

because

gives, leads to, approaches
per

belongs to; a member of; an
element of

does not belong to; is not a
member of; is not an element of

contained in; a proper subset of
contained in; subset
intersection

union

for all

COS X; cosine X

sine X

tangent x

COSeC X

shine X

cosh x

than x

mod Xx; modulus X
degrees Centigrade
degrees Fahrenheit
degrees Kelvin

94

/'dabl def/ /'sekond dr'rrvotrv/

/'tripl deef/ / trebl deef/ /03:d
dr'rvotrv/

/£5:0 di'rrvativ/

/pa.fal di'rrvativ/ /delts/
/'mtigral/

/sAam/

/w10 'rispekt/

/log/

/log to 09 bers tu: av eks/
/'0eatd:/

/br'’kpz/

/givz/ NMi:dz to/ /oprovtfoz/
/p3:/

/br'lonz/ /'memba/ /'elimont/

/not br'loy/ /not o 'memba/ /not on

'elimont/

/kan'teind m/ /"propas 'sabset/
/'sabset/

/'mtosek fon/
/'ju:nion/

/fa ro:l/

/koz/

/sam/

Itan/

/'kovsek/

/'[am/

/'ko//

/0n/

/mod/ /'modjoulos/
/dr'gri:z 'sentigreid/
/dr'gri:z 'faeranhart/
/dr'gri:z 'kelvin/

0°K, —

97315 °C absolute zero /absalu:t zi:rou/

mm millimetre /'milimi:to/

cm centimetre /'sentimi:to/

cC. cm? cubic centimetre, centimetre /kjubik ' _
’ cubed 'sentimi:ta/ /'sentimi:ta 'kju:bd/

m metre /'mi:to/

km kilometre /kr'lomrts/

mg milligram /'miligraeem/

g gram /greem/

kg kilogram /'kilograem/

AC A.C. /e1 si:/

DC D.C. /di: si:/

Examples

X+1 X plus one

X -1 X minus one

Xt1 X plus or minus one

Xy Xy; Xtimesy; x multiplied by y

ery)_ y)(x X minus y, x plus y

xly x overy; xdivided by y;

X+Yy x divided by y

X=5 x equals 5; xisequal to 5

XRy X is approximately equal to y

X=y X is equivalent to y; x is identical with 'y

XZ£Y X is not equal to y

X>y X is greater than y

X<y X is less than y

X>y X is greater than or equal to y

X<y X is less than or equal to y

0<x<1 |zerois lessthan x is less than 1; x is greater than zero and less than 1
0<x<1 |zerois lessthan or equal to x is less than or equal to 1; x is greater than

95

http://www.uefap.com/speaking/symbols/symbols.htm#top

(X +)2
(xly)?
n!

x%

(0.0]
Xy
X o 1ly
X

X

f(x) fx
f'(x)
"X
(x)
4

ov

ov
00

ov
oo’
dv

de’

or equal to zero and less than or equal to 1

X squared

X cubed

X to the fourth; x to the power four

X to the n; x to the nth; x to the power n

X to the minus n; x to the power of minus n

root X; square root x; the square root of x

the cube root of x

the fourth root of x

the nth root of x

x plus y all squared

x over y all squared

n factorial; factorial n

X percent

infinity

X varies as y; x is (directly) proportional to y

X varies as one over y; x is indirectly proportional to y
X dot

x double dot

f of x; the function of x

f dash x; the (first) derivative of with respect to x

f double-dash x; the second derivative of f with respect to x
f triple-dash x; f treble-dash x; the third derivative of f with respect to x
f four x; the fourth derivative of f with respect to x
the partial derivative of v

delta v by delta theta, the partial derivative of v with respect to 6

delta two v by delta theta squared; the second partial derivative of v
with respect to 0

the derivative of v
d v by d theta, the derivative of v with respect to theta
d 2 v by d theta squared, the second derivative of v with respect to

theta,

96

integral
integral from zero to infinity

> sum
i the sum from i equals 1 to n
W.I.L. with respect to
logey log to the base e of y; log y to the base e; natural log (of) y
' therefore
because
— gives, approaches
Ax — 0 delta x approaches zero
'A'TO the limit as delta x approaches zero, the limit as delta x tends to zero
'A:EO the limit as delta x approaches zero, the limit as delta x tends to zero
m/sec metres per second
X E A x belongs to A; x is a member of A; x is an element of A
i A ;does not belong to A; x is not a member of A; x is not an element of
ACB A is contained in B; A is a proper subset of B
ACB A is contained in B; A is a subset of B
ANB A intersection B
AUB A union B
COS X COS X; cosine X
sin x sine X
tan x tangent x, tan x
COSEC X |COSeC X
sinh x shine X
cosh x cosh x
tanh x than x
] mod X; modulus x
18 °C eighteen degrees Centigrade
70 F seventy degrees Fahrenheit
Greek alphabet

97

0 e X e <KAMT 3o mnZZ>ATOIEZNTE W

DSl 0| W< ™™ L

QO Uxn| < &= | > A

el € R |6/ a9 Qq

alpha
beta
gamma
delta
epsilon
zeta
eta
theta
iota
kappa
lamda
mu

nu

Xi
omicron
pi

rho
sigma
tau
upsilon
phi

chi

psi
omega

['eelfo/
/'bi:to/
/'gemo/
/'delta/
/'epsilon/
/'zi:ta/
/":to/
/'01:to/
/at'oute/
/'kaepa/
/Memds/
/'mju:/
/mju:/
/'ksar/
/'avmikran/
/'par/
/'rov/
/'s1igma/
/'tav/
/'jopsilon/
/'fai/
/'kar/
/'psa1/

/'ovmiga/

Roman alphabet

I O Mmoo w>
SQ|l+|o|alo|oc|o

/'e1/
/'bi:/
/'si:/
/'di:/
/'./
['ef/
/'dzi:/
/'ettf/

98

| i /ar
J |j [/'dzer/
K k [/'ker/
L I [/[ell
m /'em/
n /'en/
/'au/
/'pt:/
/'kju:/
/'a:/
'es/
I'ti:/
l'ju:/
V v ['vii/
W \w /'dablju:/
X x |['eks/
Y y [/'war/
Z z ['zed/

cl Hdlwxlolvolzl=z
= 10 T | O

c |+ »

Fractions

% a half /3 'ha:f/

Y4 a quarter /9 'kwa:to/
% three quarters |/0ri: 'kwo:toz/
Y5 |a third /2'03:d/

% two thirds |/tu: '03:dz/
% la fifth /3 'fifo/

% two fifths /tu: 'fifBs/

6 [three fifths |/Ori: 'fif9s/
% four fifths |/fo: 'fifOs/

% a sixth /3 'siks6/

% five sixths |/farv 'siksOs/
Y& an eighth /on 'ertd/

RN

99

% three eighths |/Ori: 'ertOs/
% five eighths |/farv 'ertOs/
7z |seven eighths |/sevan 'ert0s/

Decimal Fractions

0.1 nought point one

0.01 nought point oh one

0.0001 nought point oh oh oh one
1.1 one point one

1.2 one point two

1.23 one point two three

1.0123 one point oh one two three
10.01 ten point oh one

21.57 twenty-one point five seven

2.6666666666.... two point six recurring

two point six one two three

2.612361236123... .
recurring

2.5 million two point five million

SI Units: Prefixes

1024 yocto 'y |/'joktov/
102 zepto z /'zeptou/
108 atto a |/'atou/
105 femto [f |/'femtouv/
102 pico p /'pi:kov/
10° nano |n /nanau/
10° micro |1 /'markrov/
102 milli 'm /'mily/
102 centi ¢ /'sentr/
101 |deci d [/'desv/
10% kilo 'k /'kilov/
10° |mega |M /'mego/

100

/no:t pomnt wan/

/no:t pomt ouv wan/

/ten pomt 9U 9U U WAN/

/wWAn pomt wan/

/wan pomt tu:/

/wan point tu: Ori:/

/waAn point 90 wAn tu: ori:/
/ten point v wAn/

/'twentt wan point farv 'sevon/
/tu: pomnt siks rr'k3:riy/

/tu: pomt siks wan tu: Ori:
r1'k3:rim/

/tu: pomt farv 'miljon/

10° |giga
10*? |tera
10% peta /'peta/

G /'gigo/
T
P
108 exa |E |/'ekso/
z
Y

/'tera/

102! zetta ['zeto/
10%* yotta
102" xona X |/'zouna/
10%° weka W /'weko/
10% 'vunda V /'vonda/

/'jota/

APPENDIX 2

HOW TO RENDER THE ARTICLE

1. Headline /
Title of the article

The article is headlined...

The headline of the article is...

The article goes under the headline...

The article under the headline... has the subhead...
The title of the article is...

The article is entitled...

2. Place of origin

The article is (was) printed / published in...
The article is from a newspaper under the nameplate...

3. Time of origin

The publication date of the article is...
The article is dated the first of October 2008.
The article is printed on the second of October, 2008.

4. Author

The article is written by...

101

The author of the article is...
The article 1s written by a group of authors. They are...

5. Theme / Topic

The article is about...

The article is devoted to...

The article deals with the topic...

The basic subject matter of the script is...

The article touches upon the topic of...

The article addresses the problem of...

The article raises/brings up the problem...

The article describes the situation...

The article assesses the situation...

The article informs us about... / comments on...
The headline of the article corresponds to the topic.

6. Main idea /
Aim of the article

The main idea of the article is...

The purpose of the article / author is to give the reader some
information on...

The aim of the article / author is

— to provide the reader with some information about...;

— to provide the reader with some material / data on...

— to inform about...;

— to compare / determine...;

7. Contents of the article
(a short summary of 3 or
4 sentences) + important
FACTS, NAMES, FIGURES.

The article can be divided into some parts.

The first part deals with...

The second covers the events...

The third touches upon the problem of...

The fourth part includes some interviews, dialogues,
pictures, reviews, references, quotations, figures.

The article is written in the form of the monologue, from the
first / third person narration.

The author starts by telling the reader that... (writes, states,
stresses, depicts, says, informs, underlines, confirms,
emphasizes, puts an accent on, accepts / denies the fact,
reports, resorts to, hints on, inclines to, points out... and so
on)

Later the article / the author describes...

102

The article / the author goes on to say that...
According to the text...

In conclusion...

The author comes to the conclusion / concludes that...
The key sentence / words of the article (is / are) the
following...

8. Vocabulary of the
article

— the topical vocabulary
— the author's vocabulary

While reading I've come across some topical words and
expressions like.../ A great number of words belong to the
topic...

The author's vocabulary is rather vivid, poor, rich...

The author resorts to colourful general phrases/ cliches /
stable statements / understatements / exaggerations / words
with negative / positive connotation / fine words /
descriptive adjectives / comparisons (to create a vivid
picture, a humorous effect / to enforce the influence on the
reader).

We see the author's mastery in conveying the main idea to
the

reader with the help of the phrases / parenthesis / sayings /
proverbs

9. Personal opinion /
impression of the article

| found the article interesting / important / useful / dull / of
no value / (too) hard to understand and assess (Why?)

| appreciate the author's word-painting as / superb / ordinary
| exaggerated.

| think / believe that...

My point is that...

In my opinion...

To my mind...

10. Personal view on the
topic / idea / problem

The message of the writer is clear to understand...
| share the author's view...

| see the problem in a different way...

| don't quite agree with the fact (that)...

103

APPENDIX 3

Texts for translation and rendering
Text 1

Types of data
All data in a program has an associated type. Internally, all data is stored just
as a sequence of bits, so the type of the data is important to understand what it
means. We have seen several different types of data already: Numbers, Booleans,
and Procedures (we use initial capital letters to signify a datatype).
A datatype defines a set (often infinite) of possible values. The Boolean
datatype contains the two Boolean values, true and false. The Number type

includes the infinite set of all whole numbers (it also includes negative numbers

104

and rational numbers). We think of the set of possible Numbers as infinite, even
though on any particular computer there is some limit to the amount of memory
available, and hence, some largest number that can be represented. On any real
computer, the number of possible values of any data type is always finite. But, we
can imagine a computer large enough to represent any given number.

The type of a value determines what can be done with it. For example, a
Number can be used as one of the inputs to the primitive procedures +,*, and =. A
Boolean can be used as the first subexpression of an if expression and as the input
to the not procedure (—not— can also take a Number as its input, but for all

Number value inputs the output is false), but cannot be used as the input to +, *, or

A Procedure can be the first subexpression in an application expression.
There are infinitely many different types of Procedures, since the type of a
Procedure depends on its input and output types. For example, recall bigger
procedure from Chapter 3:

(define (bigger a b) (if (> ab) a b))

It takes two Numbers as input and produces a Number as output. We denote
this type as:

Number Number Number

The inputs to the procedure are shown on the left side of the arrow. The type
of each input is shown in order, separated by the _ symbol. The output type is
given on the right side of the arrow.

From its definition, it is clear that the bigger procedure takes two inputs
from its parameter list. How do we know the inputs must be Numbers and the
output is a Number?

The body of the bigger procedure is an if expression with the predicate
expression (> a b). This applies the > primitive procedure to the two inputs. The
type of the > procedure is Number _ Number ! Boolean. So, for the predicate
expression to be valid, its inputs must both be Numbers. This means the input

values to bigger must both be Numbers. We know the output of the bigger

105

procedure will be a Number by analyzing the consequent and alternate
subexpressions: each evaluates to one of the input values, which must be a
Number. Starting with the primitive Boolean, Number, and Procedure types, we
can build arbitrarily complex datatypes.

(Evans D. Introduction to Computing/ Explorations in Language, Logic, and

Machines. 2011)
Text 2
History of Computing Machines

The goal of early machines was to carry out some physical process with less
effort than would be required by a human. These machines took physical things as
inputs, performed physical actions on those things, and produced some physical
output. For instance, a cotton gin takes as input raw cotton, mechanically separates
the cotton seed and lint, and produces the separated products as output.

The first big leap toward computing machines was the development of
machines whose purpose is abstract rather than physical. Instead of producing
physical things, these machines used physical things to represent information. The
output of the machine is valuable because it can be interpreted as information, not
for its direct physical effect.

Our first example is not a machine, but using fingers to count. The base ten
number system used by most human cultures reflects using our ten fingers for
counting. Successful shepherds needed to find ways to count higher than ten.
Shepherds used stones to represent numbers, making the cognitive leap of using a
physical stone to represent some quantity of sheep. A shepherd would count sheep
by holding stones in his hand that represent the number of sheep.

More complex societies required more counting and more advanced
calculating. The Inca civilization in Peru used knots in collections of strings known
as khipu to keep track of thousands of items for a hierarchical system of taxation.
Many cultures developed forms of abaci, including the ancient Mesopotamians and
Romans. An abacus performs calculations by moving beads on rods. The Chinese

suan pan (“calculating plate™) is an abacus with a beam subdividing Suan Pan the

106

rods, typically with two beads above the bar (each representing 5), and five beads
below the beam (each representing 1). An operator can perform addition,
subtraction, multiplication, and division by following mechanical processes using
an abacus.

All of these machines require humans to move parts to perform calculations.
As machine technology improved, automatic calculating machines were built
where the operator only needed to set up the inputs and then turn a crank or use
some external power source to perform the calculation. The first automatic
calculating machine to be widely demonstrated was the Pascaline, built by then
nineteen-year old French mathematician Blaise Pascal (also responsible for
Pascal’s triangle from Exploration 5.1) to replace the tedious calculations he had to
do to manage his father’s accounts. The Pascaline had five wheels, each
representing one digit of a number, linked by gears to perform addition with
carries. Gottfried Wilhelm von Leibniz built the first machine capable of
performing all four basic arithmetic operations (addition, subtraction,
multiplication, and division) fully mechanically in 1694.

Over the following centuries, more sophisticated mechanical calculating
machines were developed but these machines could still only perform one
operation at a time. Performing a series of calculations was a tedious and error-
prone process in which a human operator had to set up the machine for each
arithmetic operation, record the result, and reset the machine for the next
calculation.

The big breakthrough was the conceptual leap of programmability. A
machine is programmable if its inputs not only control the values it operates on,
but the operations it performs.

The first programmable computing machine was envisioned (but never
successfully built) in the 1830s by Charles Babbage. Babbage was born in London
in 1791 and studied mathematics at Cambridge. In the 1800s, calculations were
done by looking up values in large books of mathematical and astronomical tables.

These tables were computed by hand, and often contained errors. The calculations

107

were especially important for astronomical navigation, and when the values were
incorrect a ship would miscalculate its position at sea (sometimes with tragic
consequences).

Babbage sought to develop a machine to mechanize the calculations to
compute these tables. Starting in 1822, he designed a steam-powered machine
known as the Difference Engine to compute polynomials needed for astronomical
calculations using Newton’s method of successive differences (a generalization of
Heron’s method from Exploration 4.1). The Difference Engine was never fully
completed, but led Babbage to envision a more general calculating machine.

This new machine, the Analytical Engine, designed between 1833 and 1844,
was the first general-purpose computer envisioned. It was designed so that it could
be programmed to perform any calculation. One breakthrough in Babbage’s design
was to feed the machine’s outputs back into its inputs. This meant the engine could
perform calculations with an arbitrary number of steps by cycling outputs back
through the machine.

The Analytical Engine was programmed using punch cards, based on the
cards that were used by Jacquard looms. Each card could describe an instruction
such as loading a number into a variable in the store, moving values, performing
arithmetic operations on the values in the store, and, most interestingly, jumping
forward and backwards in the instruction cards. The Analytical Engine supported
conditional jumps where the jJump would be taken depending on the state of a lever
in the machine (this is essentially a simple form of the if expression).

In 1842, Charles Babbage visited Italy and described the Analytical Engine
to Luigi Menabrea, an Italian engineer, military officer, and mathematician who
would later become Prime Minister of Italy. Menabrea published a description of
Babbage’s lectures in French. Ada Augusta Byron King (also known as Ada,
Countess of Lovelace) translated the article into English.

In addition to the translation, Ada added a series of notes to the article. The
notes included a program to compute Bernoulli numbers, the first detailed program

for the Analytical Engine. Ada was the first to realize the importance and interest

108

in creating the programs themselves, and envisioned how programs could be used
to do much more than just calculate mathematical functions. This was the first
computer program ever described, and Ada is recognized as the first computer
programmer.

Despite Babbage’s design, and Ada’s vision, the Analytical Engine was
never completed. It is unclear whether the main reason for the failure to build a
working Analytical Engine was due to limitations of the mechanical components
available at the time, or due to Babbage’s inability to work with his engineer
collaborator or to secure continued funding.

The first working programmable computers would not appear for nearly a
hundred years. Advances in electronics enabled more reliable and faster
components than the mechanical components used by Babbage, and the
desperation brought on by World War 1l spurred the funding and efforts that led to
working general-purpose computing machines.

The remaining conceptual leap is to treat the program itself as data. In
Babbage’s Analytical Engine, the program is a stack of cards and the data are
numbers stored in the machine. The machine cannot alter its own program.

The idea of treating the program as just another kind of data the machine can
process was developed in theory by Alan Turing in the 1930s, and first
implemented by the Manchester Small-Scale Experimental Machine (built by a
team at Victoria University in Manchester) in 1948.

This computer (and all general-purpose computers in use today) stores the
program itself in the machine’s memory. Thus, the computer can create new
programs by writing into its own memory. This power to change its own program
Is what makes stored-program computers so versatile.

(Evans D. Introduction to Computing/ Explorations in Language, Logic, and

Machines. 2011)

Text 3

109

Running Time

We want a measure of the running time of a procedure that satisfies two
properties: (1) it should be robust to ephemeral properties of a particular execution
or computer, and (2) it should provide insights into how long it takes evaluate the
procedure on a wide range of inputs.

To estimate the running time of an evaluation, we use the number of steps
required to perform the evaluation. The actual number of steps depends on the
details of how much work can be done on each step. For any particular processor,
both the time it takes to perform a step and the amount of work that can be done in
one step varies. When we analyze procedures, however, we usually don’t want to
deal with these details. Instead, what we care about is how the running time
changes as the input size increases. This means we can count anything we want as
a “step” as long as each step is the approximately same size and the time a Step
requires does not depend on the size of the input.

The clearest and simplest definition of a step is to use one Turing Machine
step. We have a precise definition of exactly what a Turing Machine can do in one
step: it can read the symbol in the current square, write a symbol into that square,
transition its internal state number, and move one square to the left or right.
Counting Turing Machine steps is very precise, but difficult because we do not
usually start with a Turing Machine description of a procedure and creating one
tedious.

Instead, we usually reason directly from a Scheme procedure (or any precise
description of a procedure) using larger steps. As long as we can claim that
whatever we consider a step could be simulated using a constant number of steps
on a Turing Machine, our larger steps will produce the same answer within the
asymptotic operators. One possibility is to count the number of times an evaluation
rule is used in an evaluation of an application of the procedure. The amount of
work in each evaluation rule may vary slightly (for example, the evaluation rule for
an if expression seems more complex than the rule for a primitive) but does not

depend on the input size.

110

Hence, it is reasonable to assume all the evaluation rules to take constant
time. This does not include any additional evaluation rules that are needed to apply
one rule. For example, the evaluation rule for application expressions includes
evaluating every subexpression. Evaluating an application constitutes one work
unit for the application rule itself, plus all the work required to evaluate the
subexpressions. In cases where the bigger steps are unclear, we can always return
to our precise definition of a step as one step of a Turing Machine.

(Evans D. Introduction to Computing/ Explorations in Language, Logic, and

Machines. 2011)
Text 4
Binary Search

If the data to search is structured, it may be possible to find an element that
satisfies some property without examining all elements. Suppose the input data is a
sorted binary tree, as introduced in Section 8.1.4. Then, with a single comparison
we can determine if the element we are searching for would be in the left or right
subtree. Instead of eliminating just one element with each application of the
matching function as was the case with list-search, with a sorted binary tree a
single application of the comparison function is enough to exclude approximately
half the elements.

The binary-tree-search procedure takes a sorted binary tree and two
procedures as its inputs. The first procedure determines when a satisfying element
has been found (we call this the ef procedure, suggesting equality). The second
procedure, cf , determines whether to search the left or right subtree. Since cf is
used to traverse the tree, the input tree must be sorted by cf .

(define (binary-tree-search ef cf tree) ; requires: tree is sorted by cf
(if (null? tree) false
(if (ef (tree-element tree)) (tree-element tree)
(if (cf (tree-element tree))
(binary-tree-search ef cf (tree-left tree))
(binary-tree-search ef cf (tree-right tree))))))

111

For example, we can search for a number in a sorted binary tree using = as
the equality function and < as the comparison function:
(define (binary-tree-number-search tree target)
(binary-tree-search (lambda (el) (= target el))
(lambda (el) (< target el))
tree))

To analyze the running time of binary-tree-search, we need to determine the
number of recursive calls. Like our analysis of list-sort-tree, we assume the input
tree is well-balanced. If not, all the elements could be in the right branch, for
example, and binary-tree-search becomes like list-search in the pathological case.

If the tree is well-balanced, each recursive call approximately halves the
number of elements in the input tree since it passed in either the left or right
subtree. Hence, the number of calls needed to reach a null tree is in ®(log n) where
n is the number of elements in the input tree. This is the depth of the tree: binary-
tree-search traverses one path from the root through the tree until either reaching
an element that satisfies the ef function, or reaching a null node.

Assuming the procedures passed as ef and cf have constant running time, the
work for each call is constant except for the recursive call. Hence, the total running
time for binary-tree-search is in ®(log n) where n is the number of elements in the
input tree. This is a huge improvement over linear searching: with linear search,
doubling the number of elements in the input doubles the search time; with binary
search, doubling the input size only increases the search time by a constant.

(Evans D. Introduction to Computing/ Explorations in Language, Logic, and

Machines. 2011)

Texth

Python programming language

We could implement a Charme interpreter using Scheme or any other

universal programming language, but implement it using the programming

112

language Python. Python is a popular programming language initially designed by
Guido van Rossum in 1991.Python is freely available from http://www.python.org.

We use Python instead of Scheme to implement our Charme interpreter for a
few reasons. The first reason is pedagogical: it is instructive to learn new
languages. As Dijkstra’s quote at the beginning of this chapter observes, the
languages we use have a profound effect on how we think. This is true for natural
languages, but also true for programming languages. Different languages make
different styles of programming more convenient, and it is important for every
programmer to be familiar with several different styles of programming. All of the
major concepts we have covered so far apply to Python nearly identically to how
they apply to Scheme, but seeing them in the context of a different language
should make it clearer what the fundamental concepts are and what are artifacts of
a particular programming language.

Another reason for using Python is that it provides some features that
enhance expressiveness that are not available in Scheme. These include built-in
support for objects and imperative control structures. Python is also well-supported
by most web servers (including Apache), and is widely used to develop dynamic
web applications.

The grammar for Python is quite different from the Scheme grammar, so
Python programs look very different from Scheme programs. The evaluation rules,
however, are quite similar to the evaluation rules for Scheme. This chapter does
not describe the entire Python language, but introduces the grammar rules and
evaluation rules for the most important Python constructs as we use them to
implement the Charme interpreter.

Like Scheme, Python is a universal programming language. Both languages
can express all mechanical computations. For any computation we can express in
Scheme, there is a Python program that defines the same computation. Conversely,
every Python program has an equivalent Scheme program.

One piece of evidence that every Scheme program has an equivalent Python

program is the interpreter we develop in this chapter. Since we can implement an

113

interpreter for a Scheme-like language in Python, we know we can express every
computation that can be expressed by a program in that language with an
equivalent Python program: the Charme interpreter with the Charme program as its
input.

Tokenizing. We introduce Python using one of the procedures in our
interpreter implementation. We divide the job of parsing into two procedures that
are combined to solve the problem of transforming an input string into a list
describing the input program’s structure. The first part is the tokenizer. It takes as
input a string representing a Charme program, and outputs a list of the tokens in
that string.

A token is an indivisible syntactic unit. For example, the Charme expression,
(define square (lambda (x) (* x X))), contains 15 tokens: (, define, square, (,lambda,
(X) (* %XX),), and). Tokens are separated by whitespace (spaces, tabs, and
newlines). Punctuation marks such as the left and right parentheses are tokens by
themselves.

The tokenize procedure below takes as input a string s in the Charme target
language, and produces as output a list of the tokens in s. We describe the Python

language constructs it uses next.

def tokenize(s): # # starts a comment until the end of the line
current=""# initialize current to the empty string (two single quotes)
tokens =[] # initialize tokens to the empty list
forcins: # for each character, c, in the string s
if c.isspace(): # if ¢ is a whitespace
if len(current) > 0: # if the current token is non-empty
tokens.append(current) # add it to the list
current ="# reset current token to empty string
elifcin'(): # otherwise, if c is a parenthesis
if len(current) > 0: # end the current token
tokens.append(current) # add it to the tokens list
current=""+# and reset current to the empty string

114

tokens.append(c) # add the parenthesis to the token list

else: # otherwise (it is an alphanumeric)
current = current + c # add the character to the current token

end of the for loop reached the end of s
if len(current) > 0: # If there is a current token
tokens.append(current) # add it to the token list
return tokens # the result is the list of tokens

(Evans D. Introduction to Computing/ Explorations in Language, Logic, and
Machines. 2011)

Text 6
Gédel’s Incompleteness Theorem

Kurt Godel was born in Brno (then in Austria-Hungary, now in the Czech
Republic) in 1906. Godel proved that the axiomatic system in Principia
Mathematica could not be complete and consistent. More generally, Godel showed
that no powerful axiomatic system could be both complete and consistent: no
matter what the axiomatic system is, if it is powerful enough to express a notion of
proof, it must also be the case that there exist statements that can be expressed in
the system but cannot be proven either true or false within the system.

Godel’s proof used construction: to prove that Principia Mathematica
contains statements which cannot be proven either true or false, it is enough to find
one such statement. The statement Godel found:

Gpm: Statement Gpm does not have any proof in the system of Principia
Mathematica.

Similarly to Russel’s Paradox, this statement leads to a contradiction. It
makes no sense for Gpm to be either true or false:

Statement Gmp is provable in the system.

If Gmp is proven, then it means Gpm does have a proof, but Gpm stated that
Gpm has no proof. The system is inconsistent: it can be used to prove a statement

that is not true.

115

Statement Gpm is not provable in the system.

Since Gpm cannot be proven in the system, Gpm is a true statement. The
system is incomplete: we have a true statement that is not provable in the system.

The proof generalizes to any axiomatic system, powerful enough to express
a corresponding statement G:

G: Statement G does not have any proof in the system.

For the proof to be valid, it is necessary to show that statement G can be
expressed in the system.

To express G formally, we need to consider what it means for a statement to
not have any proof in the system. A proof of the statement G is a sequence of
steps, TO, T1, T2, . . ., TN. Each step is the set of all statements that have been
proven true so far. Initially, TO is the set of axioms in the system. To be a proof of
G, TN must contain G. To be a valid proof, each step should be producible from
the previous step by applying one of the inference rules to statements from the
previous step.

To express statement G an axiomatic system needs to be powerful enough to
express the notion that a valid proof does not exist. Godel showed that such a
statement could be constructed using the Principia Mathematica system, and using
any system powerful enough to be able to express interesting properties. That is, in
order for an axiomatic system to be complete and consistent, it must be so weak
that it is not possible to express this statement has no proof in the system.

(Evans D. Introduction to Computing/ Explorations in Language, Logic, and

Machines. 2011)

Text 7
Ontogeny Recapitulates Phytogeny
After Charles Darwin’s book The Origin of the Species was published, the
German zoologist Ernst Haeckel stated that “Ontogeny Recapitulates Phylogeny.”
By this he meant that the development of an embryo (ontogeny) repeats (i.e.,

recapitulates) the evolution of the species (phylogeny). In other words, after

116

fertilization, a human egg goes through stages of being a fish, a pig, and so on
before turning into a human baby. Modern biologists regard this as a gross
simplification, but it still has a kernel of truth in it.

Something analogous has happened in the computer industry. Each new
species (mainframe, minicomputer, personal computer, embedded computer, smart
card, etc.) seems to go through the development that its ancestors did. The first
mainframes were programmed entirely in assembly language. Even complex
programs, like compilers and operating systems, were written in assembler. By the
time minicomputers appeared on the scene, FORTRAN, COBOL, and other high-
level languages were common on mainframes, but the new minicomputers were
nevertheless programmed in assembler (for lack of memory). When
microcomputers (early personal computers) were invented, they, too, were
programmed in assembler, even though by then minicomputers were also
programmed in high-level languages. Palmtop computers also started with
assembly code but quickly moved on to high-level languages (mostly because the
development work was done on bigger machines). The same is true for smart
cards.

Now let us look at operating systems. The first mainframes initially had no
protection that handled one manually-loaded program at a time. Later they
acquired the hardware and operating system support to handle multiple programs at
once, and then full timesharing capabilities.

When minicomputers first appeared, they also had no protection hardware
and ran one manually-loaded program at a time, even though multiprogramming
was well established in the mainframe world by then. Gradually, they acquired
protection hardware and the ability to run two or more programs at once. The first
microcomputers were also capable of running only one program at a time, but later
acquired the ability to multiprogram. Palmtops and smart cards went the same
route.

Disks first appeared on large mainframes, then on minicomputers,

microcomputers, and so on down the line. Even now, smart cards do not have hard

117

disks, but with the advent of flash ROM, they will soon have the equivalent of it.
When disks first appeared, primitive file systems sprung up. On the CDC 6600,
easily the most powerful mainframe in the world during much of the 1960s, the file
system consisted of users having the ability to create a file and then declare it to be
permanent, meaning it stayed on the disk even after the creating program exited.
To access such a file later, a program had to attach it with a special command and
give its password (supplied when the file was made permanent). In effect, there
was a single directory shared by all users. It was up to the users to avoid file name
conflicts. Early minicomputer file systems had a single directory shared by all
users and so did early microcomputer file systems.

Virtual memory (the ability to run programs larger than the physical
memory) had a similar development. It first appeared in mainframes,
minicomputers, microcomputers and gradually worked its way down to smaller
and smaller systems. Networking had a similar history.

In all cases, the software development was dictated by the technology. The
first microcomputers, for example, had something like 4 KB of memory and no
protection hardware. High-level languages and multiprogramming were simply too
much for such a tiny system to handle. As the microcomputers evolved into
modern personal computers, they acquired the necessary hardware and then the
necessary software to handle more advanced features. It is likely that this
development will continue for years to come. Other fields may also have this
wheel of reincarnation, but in the computer industry it seems to spin faster.

1.7.1 Monolithic Systems

By far the most common organization, this approach might well be subtitled
“The Big Mess.” The structure is that there is no structure. The operating system is
written as a collection of procedures, each of which can call any of the other ones
whenever it needs to. When this technique is used, each procedure in the system
has a well-defined interface in terms of parameters and results, and each one is free
to call any other one, if the latter provides some useful computation that the former

needs.

118

To construct the actual object program of the operating system when this
approach is used, one first compiles all the individual procedures, or files
containing the procedures, and then binds them all together into a single object file
using the system linker. In terms of information hiding, there is essentially none—
every procedure is visible to every other procedure (as opposed to a structure
containing modules or packages, in which much of the information is hidden away
inside modules, and only the officially designated entry points can be called from
outside the module).

Even in monolithic systems, however, it is possible to have at least a little
structure. The services (system calls) provided by the operating system are
requested by putting the parameters in a well-defined place (e.g., on the stack) and
then executing a trap instruction. This instruction switches the machine from user
mode to kernel mode and transfers control to the operating system. The operating
system then fetches the parameters and determines which system call is to be
carried out. After that, it indexes into a table that contains in slot k a pointer to the
procedure that carries out system call k.

This organization suggests a basic structure for the operating system:

1. A main program that invokes the requested service procedure.

2. A set of service procedures that carry out the system calls.

3. A set of utility procedures that help the service procedures.

In this model, for each system call there is one service procedure that takes
care of it. The utility procedures do things that are needed by several service

procedures, such as fetching data from user programs.

(Evans D. Introduction to Computing/ Explorations in Language, Logic, and
Machines. 2011)
Text 8
Layered Systems
A generalization of the approach of Fig. 1-24 is to organize the operating

system as a hierarchy of layers, each one constructed upon the one below it. The

119

first system constructed in this way was the THE system built at the Technische
Hogeschool Eindhoven in the Netherlands by E. W. Dijkstra (1968) and his
students. The THE system was a simple batch system for a Dutch computer, the
Electrologica X8, which had 32K of 27-bit words (bits were expensive back then).

The system had 6 layers, as shown in Fig. 1-25. Layer 0 dealt with allocation
of the processor, switching between processes when interrupts occurred or timers
expired. Above layer 0, the system consisted of sequential processes, each of
which could tie programmed without having to worry about the fact that multiple
processes were running on a single processor. In other words, layer 0 provided the
basic multiprogramming of the CPU.

Layer Function

5

The operator

4

User programs

3

Input/output management

2

Operator-process communication

1

Memory and drum management

0

Processor allocation and multiprogramming

Figure 1-25. Structure of the THE operating system.

Layer 1 did the memory management. It allocated space for processes in
main memory and on a 512K word drum used for holding parts of processes
(pages) for which there was no room in main memory. Above layer 1, processes
did not have to worry about whether they were in memory or on the drum; the
layer 1 software took care of making sure pages were brought into memory

whenever they were needed.

120

Layer 2 handled communication between each process and the operator
console. Above layer 1, processes did not have to worry about whether they were
in memory or on the drum; the layer 1 software took care of making sure pages
were brought into memory whenever they were needed. Layer 2 handled
communication between each process and the operator console. Above this layer
each process effectively had its own operator console. Layer 3 took care of
managing the 1/O devices and buffering the information streams to and from them.
Above layer 3 each process could deal with abstract 1/O devices with nice
properties, instead of real devices with many peculiarities. Layer 4 was where the
user programs were found. They did not have to worry about process, memory,
console, or 1/0 management. The system operator process was located in layer 5.

A further generalization of the layering concept was present in the
MULTICS system. Instead of layers, MULTICS was described as having a series
of concentric rings, with the inner ones being more privileged than the outer ones
(which is effectively the same thing). When a procedure in an outer ring wanted to
call a procedure in an inner ring, it had to make the equivalent of a system call, that
iIs, @ TRAP instruction whose parameters were carefully checked for validity
before allowing the call to proceed. Although the entire operating system was part
of the address space of each user process in MULTICS, the hardware made it
possible to designate individual procedures (memory segments, actually) as
protected against reading, writing, or executing.

Whereas the THE layering scheme was really only a design aid, because all
the parts of the system were ultimately linked together into a single object
program, in MULTICS, the ring mechanism was very much present at run time
and enforced by the hardware. The advantage of the ring mechanism is that it can
easily be extended to structure user subsystems. For example, a professor could
write a program to test and grade student programs and run this program in ring n ,
with the student programs running in ring n +1 so that they could not change their
grades.

(Tanenbaum Andrew S. Modern Operating Systems/ Prentice Hall PTR. — 976 pp.)

121

Text9
Lipschitzian Optimization without the Lipschitz Constant
D. R. Jones, C. D. Pertunnen, B. E. Stuckman

From a theoretical point of view, the Lipschitzian approach to global
optimization has always been attractive. By assuming knowledge of a Lipschitz
constant (i.e., a bound on the rate of change of the objective function), global
search algorithms can be developed and convergence theorems easily proved.
Since Lipschitzian methods are deterministic, there is no need for multiple runs.
Lipschitzian methods also have few parameters to be specified (besides the
Lipschitz constant), and so the need for parameter finite-tuning is minimized.
Finally, Lipschitzian methods can place bounds on how far they are from the
optimum function value, and hence can use stopping criteria that are more
meaningful than a simple iteration limit.

In practice, however, Lipschitzian optimization has three major problems: (i)
specifying the Lipschitz constant; (ii) speed of convergence; and (iii)
computational complexity in higher dimensions. This paper shows how these
problems can be eliminated by modifying the standard approach.

Specifying a Lipschitz constant is a practical problem because a Lipschitz
constant may not exist or be easily computed. For example, in optimizing a
nonlinear control system, the objective function may be based on a time-
consuming simulation or, perhaps, an experiment on the real system. Similarly, in
mechanical engineering applications, designs are often evaluated by a lengthy
finite-element analysis. In these cases, no closed-form expression for the objective
function is available, and so computing a Lipschitz constant is usually difficult or
impossible. The new algorithm eliminates the need to specify the Lipschitz
constant by carrying out simultaneous searches using all possible constants from
zero to infinity. The exact sense in which this is done will become clear later.

The second problem--speed of convergence--is closely related to the first. As

we describe later, the Lipschitz constant can be viewed as a weighting parameter

122

that indicates how much weight to place on global versus local exploration. In
standard Lipschitzian methods, this constant is usually large because it must equal
(or exceed) the maximum rate of change of the objective function. As a result,
these methods place a high emphasis on global search and exhibit slow
convergence. In contrast, the new algorithm uses all possible constants, and
therefore operates at both the global and local level. Once the global part of the
algorithm finds the basin of convergence of the optimum, the local part of the
algorithm quickly and automatically exploits it. This is why the new algorithm can
converge more quickly than the standard approach.

The third and final problem has to do with computational complexity. When
optimizing a function of n variables subject to simple bounds, the search space is a
hyperrectangle in n-dimensional Euclidean space. Most previous Lipschitzian
algorithms partition this search space into smaller hyperrectangles whose vertices
are sampled points. Horst and Tuy review several such methods. To initialize the
search, these algorithms must evaluate all 2» vertices of the search space. The new
algorithm cuts through this computational complexity by sampling the midpoint of
each hyperrectangle as opposed its vertices. Whatever the number of dimensions, a
rectangle can have only one midpoint.

As mentioned above, the new algorithm does not need a Lipschitz constant
to determine where to search. But knowledge of a Lipschitz constant can be helpful
in determining when to stop searching (e.g., stop when one is certain to be within e
of the optimum function value). When a Lipschitz constant is not known, the
algorithm stops after a prespecified number of iterations.

The new algorithm has only one parameter that must be specified in addition
to the iteration limit. Empirical results suggest that the algorithm is fairly
insensitive to this parameter, which can be varied by several orders of magnitude
without substantially affecting performance. In contrast, many global search
methods have several algorithmic parameters that must be carefully adjusted to
ensure good results. One of our goals in developing the new algorithm was to

eliminate the need to experiment with such algorithmic parameters.

123

We call the new algorithm DIRECT. This captures the fact that it is a direct
search technique and also is an acronym for dividing rectangles, a key step in the
algorithm. We will introduce DIRECT as a modification and extension of a one-
dimensional Lipschitzian algorithm due to Shubert. We begin in Section 2 by
reviewing Shubert's method and discussing why it is hard to extend it to more than
one dimension. Section 3 then modifies Shubert's method to make it tractable in
higher dimensions and to eliminate the need to specify a Lipschitz constant. This
gives us the one-dimensional DIRECT algorithm. Section 4 extends this one-
dimensional algorithm to several dimensions. Section 5 proves convergence.
Section 6 compares the performance of DIRECT to other algorithms, and Section 7
summarizes our results.

(Journal of optimization theory and application: Vol. 79, No. 1, October 1993)

124

Bibliography

1. Above the Clouds: A Berkeley View of Cloud Computing. Michael
Armbrust, etal // University of California, Berkeley Technical Report No.
UCB/EECS-2009-28 February 10, 2009. [2nexTponnsriii pecype] URL:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf (mara
oOpamienus: 22.10.2013)

2. Crandall R., Pomerance C. Prime Numbers. A Computational

Perspective . — Springer Science+ Business Media, Inc. — 2005. — 598 pp.
3. Encyclopaedia Britannika [Dnextponnsiit pecypc] URL:
http://www.britannica.com (mara ooparenus: 22.10.2013)

4. Evans D. Introduction to Computing/ Explorations in Language,
Logic, and Machines. 2011 [DnexTponnsriii pecype] URL:
http://computingbook.org (mara oopamenus: 22.10.2013)

5. Introduction to grid computing by B.Jacob, et al. IBM Redbooks, 2005.

[DnekTponHbIit pecype] URL:
http://www.redbooks.ibm.com/redbooks/pdfs/sg246778.pdf (nara obpamienus:
22.10.2013)

6. Oxford Dictionaries [9nekrponnsiii pecypc] URL:

http://www.oxforddictionaries.com/ (mara obpamenus: 22.10.2013)

125

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://www.britannica.com/
http://computingbook.org/
http://www.redbooks.ibm.com/redbooks/pdfs/sg246778.pdf
http://www.oxforddictionaries.com/

7. Tanenbaum Andrew S. Modern Operating Systems/ Prentice Hall
PTR. — 976 pp.

8. Tanenbaum Andrew S., Woodhull Albert S. Operating
Systems/Design and Implementation/ Prentice Hall PTR. — 1080 pp.

9. Thomas Hahn. Future human computer interaction with special focus
on input and output techniques. 2010. [nekTponnsiii pecypc] URL:
http://www.olafurandri.com/nyti/papers2010/FutureHumanComputerinteraction.pd
f (mata oopamenwus: 22.10.2013)

126

http://www.olafurandri.com/nyti/papers2010/FutureHumanComputerInteraction.pdf
http://www.olafurandri.com/nyti/papers2010/FutureHumanComputerInteraction.pdf

